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Abstract

Many web applications available today make use of some way of session management
to be able to couple state to a particular user. This state varies from the user’s
preferences to user authentication and private information. Unfortunately, it is
possible for an attacker to exploit session management in order to impersonate
another user at a web application. In this thesis we describe attacks that enable an
attacker to impersonate a victim, and the ways in which they can be prevented.

Different attacks abusing session management are known: session hijacking,
wherein the attacker captures a victim’s session identifier (or SID); session fixation,
wherein the attacker imposes his own SID upon a victim’s web browser; and cross
site request forgery, wherein the attacker uses a victim’s browser to issue requests as
if they came from the victim. For all three attacks, different attack vectors exist,
which allow an attacker to create complex attack scenarios which are difficult to
prevent.

Over the years, many server-side countermeasures to session hijacking and session
fixation have been proposed. While most of these suffer shortcomings, some good
server-side countermeasures exist. Moreover, different web frameworks have satis-
factory session security already built in. Unfortunately, web application developers
often neglect to implement these solutions in their web applications.

Client-side countermeasures to session attacks are also available. However, they
are far less numerous than their server-side counterparts. Furthermore, a sound
client-side solution to session fixation attacks is inexistent. Because of this, users of
a web application are unable to secure themselves if the web application they are
using is vulnerable to session fixation attacks.

We propose a client-side solution to session fixation and session hijacking attacks,
which is based on the principle that SIDs that are managed via JavaScript should
not be allowed to interfere with SIDs that are managed over HTTP. We implement
our solution as an add-on for the Firefox web browser and find that it protects users
against the aforementioned attacks, while having little to no impact on the user
experience.
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Samenvatting

Veel hedendaagse webapplicaties maken gebruik van sessiebeheer om informatie aan
een bepaalde gebruiker te kunnen koppelen. Deze informatie kan gaan van het opslaan
van gebruikersvoorkeuren tot het bijhouden van authenticatie- en privégegevens van
de gebruiker. Het is jammer genoeg ook mogelijk voor een aanvaller om sessiebeheer
te misbruiken en zich zo voor te doen als een andere gebruiker. In deze thesis
beschrijven we aanvallen waarmee een aanvaller zich kan voordoen als zijn slachtoffer,
alsook hoe deze aanvallen kunnen worden voorkomen.

Sessiebeheer kan op verschillende manieren misbruikt worden door een aanvaller:
door het kapen van sessies, waarbij een aanvaller de sessie-identiteit (of SID) van het
slachtoffer onderschept; door het opleggen van sessies, waarbij een aanvaller ervoor
zorgt dat de browser van het slachtoffer de SID van de aanvaller gebruikt; en door
het misbruiken van de webbrowser van het slachtoffer om paginaverzoeken te sturen
naar een webapplicatie alsof ze van het slachtoffer komen. Alle drie deze aanvallen
kunnen op verschillende manieren uitgevoerd worden, hetgeen een aanvaller toelaat
om complexe aanvalsscenario’s te bedenken die moeilijk te voorkomen zijn door de
webontwikkelaar.

Door de jaren heen zijn er verschillende tegenmaatregelen voorgesteld die het
kapen en opleggen van sessies moeten voorkomen aan de kant van de server. Ondanks
het feit dat veel van deze maatregelen tekort schieten, bestaan er toch enkele degelijke
servergerichte oplossingen. Bovendien werd beveiliging tegen sessieaanvallen succesvol
ingebouwd in de meeste populaire webframeworks. Jammer genoeg wordt deze
bescherming door webontwikkelaars vaak over het hoofd gezien.

Ook aan de kant van de gebruiker zijn er verschillende tegenmaatregelen beschik-
baar die sessieaanvallen moeten voorkomen. Deze zijn echter minder talrijk dan de
maatregelen aan de kant van de server. Bovendien is een solide gebruikersgerichte
oplossing tegen het opleggen van sessies onbestaande. Dit heeft als gevolg dat ge-
bruikers van een webapplicatie niet in staat zijn om zichzelf te beveiligen wanneer de
gebruikte webapplicatie kwetsbaar is voor dit soort aanvallen.

We stellen een eigen oplossing voor tegen het kapen en opleggen van sessies. Deze
oplossing werkt aan de kant van de gebruiker en is gebaseerd op het principe dat
er een duidelijke scheiding gemaakt moet worden tussen SID’s die beheerd worden
via JavaScript en SID’s die beheerd worden via HTTP. We implementeren deze
oplossing als een add-on voor de Firefox webbrowser en merken op dat gebruikers
van de add-on beschermd worden tegen de genoemde aanvallen, met een minimale
tot onbestaande impact op de gebruikerservaring.
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Chapter 1

Introduction

Over the last few years, the web has shifted from being a collection of pages containing
static information to a dynamic and fully interactive platform. Where the Internet
was once used only as an information repository, today it powers complex web
applications, developed both to replace programs that used to run locally on a user’s
computer, and to provide whole new functionality that is possible only on the web.
For this, web protocols are used and extended in ways they were never imagined to
be.

Increasingly, these web applications deal with sensitive personal information.
Thanks to the emergence of web-based mail applications like Google’s GMail and
Microsoft’s Hotmail, and social networking websites like Facebook and Netlog, a
great deal of user information is stored on the servers of web applications. Moreover,
shops have moved to the online world, and payments can be made online by using
online banking or credit cards. Because many web applications couple sensitive data
to the user’s account, confidentiality of the user’s authentication information is of
utmost importance.

Most web applications handle user authentication via the concept of web sessions.
These allow users to use a web application without having to enter their login
credentials for every action taken. Unfortunately, web sessions have many security
weaknesses. OWASP, a leading organization in the field of web application security,
rates ‘Broken Authentication and Session Management’ as the third most important
web application security risk [118]. Furthermore, many high-profile web applications
are vulnerable to attacks on session management: YouTube and Twitter are two
examples of web applications that used to contain such vulnerabilities in the past
[121, 101].

A problem is that users of a web application have to trust the developer of the
application to take the necessary security precautions. The web developer, on the
other hand, may consider such precautions to be too difficult or too costly, leaving the
users unprotected. Moreover, the web developer might not even know that his web
application contains security vulnerabilities. To enable users to protect themselves
against session attacks, regardless of the web applications being secure, a client-side
tool offering protection against these attacks is needed.
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1. Introduction

In this thesis, we examine the security of sessions in web applications. Our
contributions are as follows:

• We provide a complete overview of three important session attacks, together
with a list of possible attack vectors for each of these attacks.

• We thoroughly evaluate different solutions that were proposed over the years
to improve session security.

• We inspect to what extent popular web frameworks provide protection against
session attacks.

• We propose a novel client-side approach to solving two important session
attacks, and we implement our policy as an add-on for the Firefox web browser.
We also provide an extensive evaluation of our add-on.
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Chapter 2

About web sessions

When a user visits a website, the web application often needs to remember which
user it is interacting with. For this reason, the concept of ‘web sessions’ was invented.
In this chapter we will see how web sessions work, and how their security can be
improved.

2.1 How web sessions work

To understand the need for web sessions, we first have to look at how web browsers
communicate with web servers. The browser requests web pages by issuing HTTP
requests to a web server [68]. The server subsequently responds to every request
with an HTTP response containing the requested page. Unfortunately, HTTP is a
stateless protocol, which means that the web server has no way of knowing whether
two different requests come from the same user. Consider for example an on-line
shop, where a user can fill its virtual shopping cart with different items available
on the website. Without state, the web application is not able to remember which
items were associated with a user on subsequent page requests. Because of this, a
mechanism is needed on top of HTTP to enable stateful communication between a
web server and a client. This mechanism is known as a web session.

Web sessions work as follows:

1. When the web server receives its first HTTP request from a particular client,
it creates a session identifier (also called a session ID or SID) that it associates
with this client. It then sends the newly generated SID to the client as part of
the HTTP response.

2. In subsequent communications, every request issued by the client to the server
contains the received SID. Because the web server has associated this SID with
a particular client, it will know whom it is interacting with.

There are three ways in which session identifiers can be attached to requests and
responses [58]. The first one, which is most common, makes use of cookies [67, 83].
Cookies are strings consisting of multiple name-value pairs which are included in

3



2. About web sessions

the Set-Cookie header of a HTTP response by the web server. Upon receiving a
cookie, the browser stores it for a specified amount of time. It then attaches this
cookie to every subsequent request made to the domain1 the cookie was set for. This
is done by including the cookie as the value for HTTP’s Cookie header. The process
is graphically depicted in Figure 2.1a. It is clear that cookies are a very convenient
mechanism for managing session identifiers. Because cookies can also be used for
other purposes than session management, we will make a distinction between cookies
(which can be used for all sorts of state information) and session cookies (which are
cookies that store a session identifier) in this text.

(a) via cookies (b) via URL rewriting

Figure 2.1: Session management

The second possibility to include session information is via URL rewriting. In this
case, the web server appends the session ID as a parameter to every URL occurring
in a response that points to a page on the web server’s own domain. Thus, when the
user clicks a link on the served page, the request that is made contains the session
ID as a parameter, and the server will know who made the request. This process is
graphically depicted in Figure 2.1b.

The third possibility is very similar to URL rewriting, but uses POST instead of
GET parameters [54]. Here, the session ID is included as a <form> element. When
the user submits the form, the session ID is sent along with the request.

In this text, we will mostly focus on SIDs in cookies, because they are by far
the most common. However, when appropriate, we will include information about
session IDs in URLs.

There are two important things to note about session IDs. Firstly, there is no
standardized way of doing session management. This means that different web
applications will use different SID names, and that they will generate SID values in
different ways. Secondly, SIDs are almost2 always used only as an enabler of server
side storage, and not as the storage itself. This means that the SID only identifies

1The actual access control policy is a bit more complicated and will be discussed in section 2.2.
2We use the term ‘almost’ because there is no standardized way of using SIDs. It can however

safely be assumed that the majority of the pages encountered on the Web will use SIDs only to
identify the user.
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2.2. Accessibility of session identifiers

the user, while all other state is saved at the server side. The server then associates
the SID with the other state information stored for that particular session.

2.2 Accessibility of session identifiers
The access policy for cookies states that a cookie is sent only to those pages that
have the same (sub)domain as the page that set the cookie. Moreover, the page to
which a cookie is sent must be on a path that is a suffix of the page that set the
cookie [98]. This means that a cookie set by the page a.example.com/s/p.html is
sent by the browser to both b.a.example.com/s/p2.html and to a.example.com/
s/ss/p3.html, but not to example.com/s/4.html or a.example.com/p5.html.

Cookies can also be accessed at the client side. For this, the Document Object
Model (or DOM) is used. The Document Object Model provides a way for pro-
gramming languages like JavaScript to access elements on a web page. It allows
SIDs that are stored in a cookie to be accessed via the document.cookie property.
For DOM objects, the Same Origin Policy (or SOP) is enforced [98]. This policy
states that web pages that want to access a certain DOM object (in this case, the
cookie) must have the same origin as this object. The origin is defined as the tuple
<protocol,domain,port>. Thus, the Same Origin Policy essentially allows only
access to DOM objects which are on the same domain as (or on a subdomain of) the
principal trying to access them. Moreover, it is required that the accessing principal
uses the same protocol and port as the protocol and port where the DOM object
originated from.

For SIDs that make use of URL rewriting, the server side access policy is different.
Here, the SID is only attached to requests that are the result of the user clicking a
link on a web page, and only when the originating web page explicitly included the
SID as a parameter in the link. Thus, the server can decide by itself for every other
web page whether the session identifier should be included in the request. At the
client side, the session identifier is again available via the DOM, this time via the
href attribute of the <a> element containing the URL. Thus, at the client side, the
SOP again applies.

2.3 Keeping web sessions secure
It is important to ensure that a session identifier can only be known by the web
server and the web browser of the user that is identified by it. If an attacker is able to
know a user’s SID, he can use it to impersonate the user within the web application.
This can have severe consequences in for example a webmail application3, where an
attacker could use the SID to read and send e-mails on behalf of the user. Another
example is the online shop, where an attacker could fill the user’s virtual shopping
cart with unwanted items, or even purchase items for himself by using the user’s
credit card information. To prevent an attacker from knowing a user’s SID, the

3Examples of widely-used webmail applications are Google’s GMail (http://mail.google.com)
and Microsoft’s Hotmail (http://www.hotmail.com).
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2. About web sessions

SID should possess some properties: it should be unguessable and unavailable to an
attacker, and its lifetime should be limited. We describe each of these properties in
this section.

2.3.1 Unguessable by an attacker

If an attacker is able to guess a user’s SID, he can compromise his session. To prevent
an attacker from guessing the user’s SID, the following properties are necessary:

Randomness

To be unguessable, a session identifier should appear like it could be any random
string of text. Random in this case means that session identifiers should have
[78, 41, 38]:

high entropy The higher the number of bits that are necessary to represent a
string, the higher the string’s entropy is.

low correlation If SIDs are correlated, an attacker might be able to derive (part
of) SIDs that will be generated from SIDs which were already generated. As a
consequence, an attacker is able to predict a victim’s session ID from his own
session ID. Furthermore, an attacker might be able to derive past SIDs from
SIDs that are currently issued.

a high number of possible values This property follows from having both high
entropy and sufficient length (which will be discussed shortly hereafter).

It must also be noted that it is not sufficient for session IDs to be only statistically
random: they have to be cryptographically random [45]. This means that more than
just a LCG [22] is needed to generate the SIDs.

Sufficient length

To prevent successful brute forcing attacks, wherein an attacker exhaustively tries
lots of possible values, a session ID should be of sufficient length. The expected
number of seconds required to guess any one valid session identifier is given by the
equation [81]:

2B + 1
2A · S

where B is the number of bits of entropy in the SID, A is the number of guesses an
attacker can try each second, and S is the number of valid SIDs at any given time.

OWASP, a leading organization in the field of web application security4, recom-
mends a session ID length of at least 128 bits [81].

4More information about the OWASP project can be found at https://www.owasp.org/.
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2.3. Keeping web sessions secure

2.3.2 Unavailable to an attacker

If an attacker is able to read the value of the victim’s SID, the victim’s session is
compromised. Because of this, it is of utmost importance that the SID value is never
visible to anyone but the legitimate user and the web servers on the domain the
SID was set for. In this section, we only describe some default properties to achieve
this. We will go into more detail about making cookies unavailable to an attacker in
section 4.1.

SIDs that are set via cookies are, by default, transmitted as clear text. This means
that, on an insecure channel like the Internet, an eavesdropper is able to intercept
the cookie value. Such an attacker can thus take over a user’s session. Interaction
between a client and a web application can also happen over a secure (TLS, but
most often referred to as SSL) connection [100, 27]. In this case, the requests and
responses (and thus, the cookie value) are encrypted, and an attacker is unable to
extract the cookie from a captured message. When using secure connections, care
must be taken that the cookie value is never sent in the clear; otherwise its value
can still be compromised. To ensure that this is the case, the secure flag should
be enabled when setting a cookie [45, 65]. This flag demands that the browser only
sends the cookie over encrypted connections.

When an SID which is set via a cookie will never need to be accessed via
JavaScript, it is best to enable the HttpOnly flag when setting the cookie [78]. When
this flag is enabled, the browser will only allow the cookie to be accessed via HTTP.
Accessing a cookie set using the HttpOnly flag via JavaScript will be disallowed.
With URL rewriting, it is not possible to state that the SID should not be available
to client-side JavaScript. Indeed, a link containing the SID will always be available
as a DOM object.

2.3.3 Short lifetime

A third way of making sessions more secure is to ensure that they have a limited
lifetime [45]. This has two advantages:

• The shorter the lifetime of a SID, the less time an attacker has to brute force
it.

• In case the attacker was able to capture the SID, the lifetime of the SID
determines how long the attacker is able to use it to successfully impersonate
the victim.

Additionally, limiting the lifetime of a session identifier makes sure that a user
will be logged out eventually. This is convenient in case a user forgets to log out
when he stops using the web application [81].

Limiting the SID’s lifetime

The lifetime of a cookie can be limited by using the expires attribute when setting
the cookie [67]. This attribute indicates the date that the cookie stops being valid.
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On this date, the user’s web browser should stop sending the cookie to the server.
The lifetime for SIDs in URLs or forms can be limited by simply not including them
in any URL or form at the next response from the server to the client. For either of
these session mechanisms, care must be taken that the session is also invalidated at
the server side. Otherwise, an attacker could still use the cookie to impersonate the
victim, even after it expired at the victim’s browser [63].

Another way of limiting the lifetime of a session identifier is presented by K.
Fu et al. [45]. By including a timestamp as part of the SID value, the server can
determine whether an SID is still valid without having to save the SID’s expiration
time as part of its state. It is important to note that, because the timestamp is
appended to the normal session identifier, this approach requires the complete SID
value (including the timestamp) to be signed by the server. Otherwise, an attacker
could just change the timestamp part of the SID to extend its lifetime. The signing
can be easily achieved by letting the server create a MAC of the entire SID, and
appending this MAC to the SID value. A disadvantage of this approach is that there
is no possibility of revoking SIDs without keeping extra server state.

Renewing the SID

Fortunately, the user does not have to re-authenticate every time he gets a new
session ID. Only three steps have to be performed by the server to provide a client
with a new SID:

1. Generate a new session ID.

2. Associate the new SID with the existing user. For this, any server side state
which was attached to the old SID should be attached to the new SID instead
[114].

3. Make sure the client uses the new SID instead of the old one. When cookies are
used for session management, this can be achieved by attaching a Set-Cookie
header containing the new SID value to the next HTTP response. The user’s
browser will notice that the cookie’s name is the same as that of the old SID,
and will therefore update the old value. When URL rewriting is used, the web
server can make the client’s browser use the new SID by making sure that all
links on subsequent web pages served to this client include the new SID value.

4. Invalidate the old session identifier.

2.3.4 Using a session management framework

Problems occur in lots of web applications because they implement their own session
management. As we will see in section 4.2, lots of web frameworks have thoroughly
tested session management already built-in. Because it is very easy to make mistakes
when providing security, it is recommended to make use of an existing session
management framework. Using such a framework does not completely relieve the
web developer of all tasks associated with session management: he must still make
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sure that the framework is configured correctly, and that channels other than HTTP
(for example, JavaScript) do not pose any security issues.

2.4 Conclusion
In this chapter, we described how session management works. We analyzed three
methods of managing web sessions: cookies, URL rewriting and form elements, and
we discussed their access policies. We described the properties a secure session
identifier should possess, while already touching upon some security issues associated
with web sessions. In the next chapter, we will go into more detail about these
issues.
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Chapter 3

Session attacks

Now that we know how web sessions work, we look into ways in which attackers are
able to abuse them. In this chapter, we will see how an attacker can exploit security
issues in session management mechanisms in order to impersonate a legitimate user
on a website. The discussion of mitigating these attacks is deferred until the next
chapter.

3.1 Background: cross-site scripting

Cross-site scripting (or XSS) [26] is not a session attack in itself. Instead, it is the
exploitation of a vulnerability in the way user input is handled within certain web
applications. The attack can be of great use when executing one of the actual session
attacks described afterwards.

In a cross-site scripting attack, the attacker exploits a vulnerability in a web
page to inject his own JavaScript code into this page. The injected code will then be
executed in the browser of any user that loads the vulnerable page.

3.1.1 Variants of cross-site scripting

There are two forms of cross-site scripting: persistent and reflected XSS. In this
subsection, we describe their differences and give some examples of possible attack
scenarios for each of them.

Persistent (stored) XSS

In a persistent XSS attack, the attacker misuses a website’s functionality that
allows users to provide their own content. This allows him to make the web server
persistently store his script code, and to make it serve this code to other users later
on. The complete scenario goes as follows:

1. The attacker provides his malicious code as input to the web application. The
web server stores this input (and thus the script code) in its database.
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2. The victim requests a page containing content provided by the attacker. The
server returns the page containing the attacker’s JavaScript.

3. The victim’s browser sees the script code as part of the requested web page
and executes it.

This attack variant is graphically illustrated in Figure 3.1a.

(a) persistent (b) reflected

Figure 3.1: The cross-site scripting attack

An example of a web application that will store user input in a database to serve
it to other clients later on is a bulletin board (phpBB1 is a well-known example). In
such a web application, a user can create forum posts which can be read by other
users. When an attacker inserts script code into a forum post, the code will be
executed by the browser of every user that reads the post.

A more recent example of web applications serving user generated content is
found in social networking sites like Facebook2. Here, a user can place information
on his own page, or on the pages of other people. This information will then be
served to the user’s friends.

Reflected (non-persistent) XSS

In a reflected XSS attack, the script code is not stored at the server. Instead, code
that was part of a request is immediately reflected back to a client’s browser as part
of the response page. The complete scenario is as follows:

1. The attacker tricks the victim into opening a malicious link containing script
code.

2. The victim opens the link, and unknowingly makes a request containing script
code to the server.

1phpBB is free and open source bulletin board software, available at http://www.phpbb.com/
2Facebook is currently the most popular social networking site. It can be found at http:

//www.facebook.com/
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3. The server reflects this script code back to the victim as part of the response.

4. The victim’s browser sees the script code as part of the requested web page
and executes it.

This attack variant is graphically illustrated in Figure 3.1b.
An example of a web page returning user input is a search form which displays

the search query as part of the response. If it does this without stripping any script
data that might be embedded in the query, the web page is vulnerable to reflected
XSS attacks [112]. To see why, consider the scenario where doing a search for query
by going to the URL http://www.trusted.com/search?q=query makes the website
return “x results for query”. In this case, the attacker can replace query by script
code that will be executed by the browser of the client that opens the link. The
attacker can then trick a user into clicking the malicious link, causing the JavaScript
code to be executed in his browser.

Another example of a scenario where a web application might return data
present in the URL is the ‘Page not found’ error page [60]. Here, the name of
the page that could not be found is often included as part of the error message.
Thus, an attacker can craft a link wherein a page with name <script>alert("XSS
succeeded");</script> is requested. The browser of a client opening this link will
then execute the JavaScript code provided by the attacker.

Tricking a user into clicking a link can be achieved by executing a phishing attack
[25]. In such an attack, the victim is lead on to believe that the attacker is a known
trusted party (e.g. the victim’s bank). The attacker, can then ask the victim to click
a link under a false premise. Because the victim thinks he can trust the source of the
link, he will be inclined to click it. If the link contains malicious data (as is the case
in a reflected XSS attack), the victim will unknowingly send this data to the server.

3.1.2 Including the script code

There are multiple ways in which script code can be included in a web page. Since all
of these can be leveraged by an attacker to inject his code, it is important that web
developers are aware of all of them. T. Jim et al. give a good overview of different
approaches to including JavaScript code [53]. We describe the most important ones,
including one that wasn’t presented in [53], here:

between <script> tags This is the most obvious way of including JavaScript in a
web page. All code between these tags will be executed as soon as the browser
encounters it.

using the <script> tag’s src parameter This parameter can be set to point to
an external piece of JavaScript. As such, an attacker is able to make a website
load JavaScript code from another domain. This method of injecting script
code gives the attacker the advantage that the actual injected string is shorter,
bypassing message length limits. Furthermore, because the attacker keeps
control over the source of the script code now, he is able to edit this code
afterwards.
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as the URL of the background image An attacker can insert a tag similar to
<div style="background-image: url(javascript:alert(’XSS’);" /> or
<style>.bar{background-image:url("javascript:alert(’XSS’);");}</style>
(where bar is the class of an object in the page) to make the browser execute
JavaScript, thinking it is loading the background image for the particular
object.

using JavaScript handlers for page elements It is possible to specify script
code that should be triggered when a certain action occurs on an element in
a web page. For example, the onload parameter of the <body> tag is used to
specify a JavaScript function that should be executed once the browser has
completed loading the page. Two other examples are the onclick and onblur
parameters, which can be specified for different kinds of tags, with <p> (which
indicates a paragraph) and <a> (which indicates a link) being two possibilities.
These parameters specify, for a certain object on the page, respectively the
JavaScript function to be executed when the object is clicked, and the function
to be executed when the object loses focus.

via binary objects If an attacker is able to include a binary object into the page,
he can use this object to execute JavaScript code [13]. Flash applets, for
example, allow running JavaScript code by using either the getURL() or the
fscommand() function [80, 2, 84].

It must also be noted that attackers can use different possible encodings to inject
JavaScript, so as to circumvent server-side JavaScript checkers, while still being able
to execute at the client side [53]. For example, the encoding of (parts of) a web
page can be changed using the encoding and charset attributes of various HTML
tags [51]. Some browsers also allow strings to contain JavaScript that is split over
multiple lines [53]. Lastly, JavaScript can be split over multiple <![CDATA[...]]>
tags, making it much harder to detect.

3.1.3 The danger of cross-site scripting

One danger of persistent XSS is immediately clear: websites which do not belong to
an attacker can still be abused by the attacker to execute malicious code at a user’s
browser. The user, thinking that a trusted site will only execute trusted code, can
fall victim to the attacker without expecting it.

There is, however, a bigger problem which applies to both persistent and reflected
XSS attacks: the problem of cross-domain interactions. Normally, the attacker’s code
would be subject to the SOP (described in section 2.2), making him unable to access
elements of a domain that he does not own. However, when the attacker’s code is
able to execute from within a trusted domain (as is the case in an XSS attack), the
code is allowed to access elements belonging to that domain [61]. This gives the
attacker the ability to read information from, and write information to, elements in
the trusted domain. To see why this is such a big issue, consider the case where an
attacker injects code into a trusted domain that reads information from this domain,
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and subsequently sends the information to the attacker’s web server. Sending this
data can be done, for example, by having JavaScript open a window containing a
page from the attacker’s domain with the data as a GET parameter [61]. These
cross-domain interactions are a major attack vector for both the session hijacking
and the session fixation attacks, as we will see in the next sections.

3.2 Session hijacking

In the session hijacking attack, an attacker tries to take over a victim’s session by
capturing the victim’s session ID. He then uses the SID to make the server think that
he is the victim. This causes him to be able to, for example, read the victim’s e-mail
in a webmail application, change the victim’s information on a social networking
website, or acquire the victim’s credit card information in an online shop. First, we
describe the attack scenario. Afterwards, we will see how the attacker can capture
the victim’s session ID.

3.2.1 Attack scenario

The session hijacking attack works as follows [78]:

1. The victim establishes a new session at the server. This is done automatically
either when he first visits the page or when he logs in (depending on the web
application), as described in the previous chapter.

2. The attacker captures the session ID that corresponds to the victim’s created
session. The methods that can be used to do this will be described in the next
section.

3. The attacker makes a request to the server, attaching the captured session ID
as his own. Because the server has no other effective3 means of distinguishing
between the victim and the attacker, it thinks that it is the victim who made
the request. Thus, the attacker is now able to impersonate the victim at the
server.

These steps are graphically illustrated in Figure 3.2.

3.2.2 Capturing the session ID

There are lots of possible ways in which an attacker can capture a victim’s session
ID. We list the most important of these attack vectors here.

3We use the term ‘effective’ here because, as we will see in section 4.1, there are some other –
unsatisfying – means for distinguishing between different clients.
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Figure 3.2: The session hijacking attack for a web application that uses cookies

Via a (passive) man-in-the-middle attack

In a man-in-the-middle (or MitM) attack, an attacker is able to read traffic that
passes between the victim and the server. A common example is when the victim
and the attacker are sharing the same network hub, or when they are both connected
to the same WiFi hotspot without using WPA2 encryption [5].

As was mentioned in section 2.3.2, the session identifier is, by default, sent over
the network as an unencrypted string of text. This is the case both when using
cookies as when making use of URL rewriting or form elements. Because of this, an
attacker able to read all network traffic can easily extract the SID from the Cookie
header, request URL or request data in one of the user’s requests, or even from the
Set-Cookie header or the response page in the server response setting the cookie [1].

This problem has been known for some time, and has recently again received
some attention thanks to tools like Hamster [47] and Firesheep [18], which make a
session hijacking attack almost trivial when the victim is using an insecure network.

Via cross-site scripting

The XSS attacks can also be used to steal a victim’s session ID. For this, the attacker
uses one of the methods described in section 3.1.2 to inject script code into a web
page on the domain he wants to acquire the cookie from. Because the script code
is loaded from within a page on the target domain, the attacker has access to both
the target domain’s cookie via the cookie attribute of the domain DOM object (for
SIDs set in cookies), and to all links on the current page (for SIDs used via URL
rewriting). However, the script is also able to send data to the attacker’s domain
(see section 3.1.3 and [61] for more information). Because of this, the attacker is able
to forward the target domain’s cookie, or an URL present on a page of the target
domain, to his own domain, effectively capturing the client’s SID.

Via the referer header

If SIDs are included in the URL (as is the case with URL rewriting), the SID can
also leak via the HTTP referer header. The referer header is used to transmit
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the website from which the request-URL was obtained to the web server that the
request is issued to [42]. When the browser attaches a referer header to requests
going to a different domain than the one it originated from, the website receiving
the referer header as part of the request can extract the client’s SID for the web
application that contained the link to the requested page [45].

If, for example, a social networking website manages sessions via URL rewriting,
an attacker could perform a session hijacking attack by sharing a link to his own
website. When another user clicks the link, a request is made to the attacker’s web
server. This request contains the URL of the current page, and thus the user’s SID
for the social networking website, in the referer header, making it available to the
attacker.

Sometimes, the referer header is suppressed in the network or by the browser,
especially for cross-domain requests [10]. Unfortunately, the percentage of requests
where the referer header is stripped is still small enough to consider leaking of
SIDs via this channel a significant threat.

Via the user

Lastly, it is also possible that the user unknowingly leaks his own session identifier.
This is the case when the user shares a link to a page of a web application that uses
URL rewriting [57], for example via email or via a social networking site. When
another user clicks the shared link, this second user will automatically take over the
first user’s session. Thus, the second user essentially performs a session hijacking
attack on the first user, possibly without even realizing it.

This problem, together with the possibility of leaking SIDs via the referer header,
provides a strong argument against using URL rewriting for session management.
There are, however, also some advantages of using URL writing instead of cookies,
as we will see in section 4.1.7.

3.3 Session fixation

In the session fixation attack, as in the session hijacking attack, an attacker’s goal
is to use the same session as a victim. However, instead of capturing the victim’s
session ID (as is the case with session hijacking), the attacker forces the victim to
use a SID that is known in advance. We will first describe the steps necessary to
execute this attack. Afterwards, we list the ways in which the attacker can force a
victim to use a certain session ID.

3.3.1 Attack scenario

The session fixation attack works as follows [63]:

1. The attacker establishes a new session at the server. He does this by sending a
request that does not include a SID, which will cause the server to attach a

17



3. Session attacks

newly generated SID to the response. Some servers also accept crafted SIDs4

[96]. In this case, the attacker can just make up a new SID, and no request
needs to be made.

2. The attacker forces the victim to use the newly created session ID. The methods
that can be used to do this will be described in the next section.

3. The victim uses his credentials to log in at the server. The SID that was
injected at the client’s web browser will automatically be attached to the
request. There now exists a session at the server, identified by the SID known
to the attacker, in which the victim is logged in.

4. The attacker makes a request to the server, attaching the captured session ID
as his own. This makes the server think that it is the victim that made the
request. As such, the attacker is able to impersonate the victim at the server.

These steps are graphically illustrated in Figure 3.3.

Figure 3.3: The session fixation attack for a web application that uses cookies

3.3.2 Injecting a session ID

In this section, we describe the most important attack vectors which can be used by
an attacker to inject a session ID into the victim’s browser.

Via GET or POST parameters

If the target website accepts session ID’s in URLs (see section 2.1), the attacker can
craft a link of the form http://www.target.com/login.php?PHPSESSID=d9qX4zKbg35,
where he chooses the desired session ID [55]. He then sends this link to the victim,
or places it on the target website as part of an XSS attack. When the victim clicks

4By crafted SIDs, we mean that these SIDs don’t need to be generated by the server in advance.
A crafted SID can be sent by a user on his first request to make the server ‘adopt’ the SID for this
user.
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the link, the request sent to the target server contains the attacker’s SID in the URL,
causing the web application to think it is the victim’s session ID. Alternatively, the
attacker can force the victim to visit the URL by using an HTTP redirect [42] to
make the victim’s browser automatically load the page [96]. This requires the victim
to visit the attacker’s page, or the attacker to be able to perform an XSS attack.

In case the target website uses POST instead of GET parameters for session
management, the link can be replaced by an automatically submitting form (as we
will see in section 3.4.2) [63, 16].

Note that, for a website to accept session IDs via GET or POST parameters, it
does not have to do its session management via URL rewriting by default. Indeed,
multiple frameworks provide URL rewriting as a fallback for browsers that don’t
support cookies, causing them to be vulnerable to session fixation via URL rewriting
[85, 21, 49].

Via cross-site scripting

If an attacker is able to inject script code into the target site (using one of the
methods described in section 3.1.2), he can use this script code to set or replace the
session cookie with the desired value. This is done by editing the document’s cookie
property [63] or by using the cookie.write() function [55].

Via the <meta> tag

When an attacker is unable to inject script code (for instance, because <script> tags
are stripped from user input), it is often still possible to abuse returned user input
for setting cookies. Instead of using JavaScript, the attacker can use the HTML
<meta> tag to set the cookie. For this, he injects the following line of HTML code
into the target web page:
<meta http−equiv=Set−Cookie content="PHPSESSID=d9qX4zKbg35 ">
where the name and value of the session cookie are chosen by the attacker [63].

Via HTTP response splitting / header injection

There is another attack which can be used by an attacker to inject a cookie on the
victim’s machine. In an HTTP response splitting attack, the attacker tricks the
victim’s browser (or an in-between proxy) into thinking that two HTTP responses
were sent by the target server, whereas both are actually part of the same HTTP
response [62]. The interesting part for the attacker is that the contents of one of
the two responses can be chosen by himself. Because of this, an attacker is able to
insert a Set-Cookie header containing the desired session identifier into the response,
effectively injecting the SID into the client’s browser [55].

Via an active man-in-the-middle attack

In an active man-in-the-middle attack, the attacker can not only eavesdrop on
the victim’s communication with the server, but can also intentionally modify this
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communication. This is the case, for example, when the attacker is able to take over
the victim’s gateway to the Internet (e.g. an Internet router or a proxy).

Since an active MitM is able to modify responses from the server to the victim, he
can alter the Set-Cookie header such that it contains the desired session identifier.
The victim’s browser will see this as the server issuing a new session cookie, and will
store the cookie accordingly.

Via subdomain cookie setting

Sometimes, an attacker is able to take over a subdomain of the target website because
it is more vulnerable than the parent domain, or because he has legitimate access
on the subdomain. Normally, setting a cookie on a subdomain would not have any
effect on the parent domain. Indeed, as we described in section 2.2, cookies will only
be used for the same domain as the one that set them, or for one of its subdomains.
Thus, a cookie set on a subdomain will not be used for its parent domain. This
makes it seem like performing a session fixation attack on a parent domain is not
possible from within a subdomain.

There is, however, the possibility to set a cookie for a parent domain by using the
cookie’s domain parameter [67]. As an example, consider the case where the attacker
is able to take over the domain vulnerable.target.com. He can then use this
domain to set a cookie for target.com, and all of its subdomains, by specifying the
cookie as PHPSESSID=d9qX4zKbg35;domain=.target.com (notice the ‘.’ preceding
target.com). This effectively allows an attacker that has access to a subdomain to
execute a session fixation attack on a parent domain [63].

A related problem occurs when two cookies with the same name are set for
both the parent domain and the subdomain. When the user visits a page on the
subdomain, his browser will attach both cookies to the request. Unfortunately, since
cookies don’t contain the domain attribute when they are sent from the client to
the server, the server has no way of distinguishing between the parent domain and
the subdomain cookie. What makes matters worse is that the order in which both
cookies are sent differs between browsers. We tested the behavior of the Firefox,
Opera and Chrome browsers, and found that:

• Firefox sends the subdomain cookie first, and the parent domain cookie second.

• Opera sends the parent domain cookie first, and the subdomain cookie second.

• Chrome sends the cookies in alphabetical order, regardless of their domain.

It has been proposed that cookies include their attributes when they are sent to the
server [66]. Unfortunately, as we can see from the previous results, this standard
has not yet been widely implemented, even though it has existed for over a decade
already.
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3.3.3 Other dangers of session fixation

It seems that the only benefit an attacker has from performing a session fixation
attack is that he can take over the session of another user. There is, however, another
issue: an attacker is also able to force a victim to be logged in under the attacker’s
account. He can do this by logging in first, and subsequently forcing the victim to
use the attacker’s session ID. This has two major implications [10]:

• An attacker can track the victim’s actions on the target web application by
making use of logging functionality offered by this application. For example,
most major search engines offer the option to log the user’s search history5,
allowing an attacker who is able to perform a session fixation attack to access
this highly sensitive information [7].

• On domains that allow the embedding of trusted scripts, it creates the ability
for an attacker to execute XSS attacks. Until recently, iGoogle6 offered the
ability to embed trusted scripts on your own personal homepage [10]. Because
of this, an attacker who is able to perform a session fixation attack has the
ability to offer scripts to a victim from within the google.com domain. He
does this by adding a script to his own homepage, and subsequently imposing
his own SID upon the victim’s browser. Thus, the next time the victim visits
iGoogle, the attacker’s home page will be loaded, and the script will be executed
from within the google.com domain.

A distinction must be made between the previously described scenario, wherein an
attacker tricks the user into logging in with a predefined SID, and the scenarios
described in this section. We will use the term login session fixation to refer to the
first variation, while using just session fixation to refer to the general class of session
fixation attacks.

3.4 Related attack: cross site request forgery

The cross site request forgery (also called CSRF or session riding) attack is different
from the session hijacking and session fixation attacks in the sense that an attacker
executing a CSRF attack does not try to completely take over a victim’s session.
Instead, the attack leverages the victim’s browser’s implicit authentication to make
requests in the name of the victim. This is accomplished by compelling the victim’s
browser into issuing a request. A possible threat exists, for example, when the
victim is logged in at the website of his bank. In this case, the attacker can use
the victim’s implicit authentication to transfer money from the victim’s account to
his own account. Before we see the ways in which the attacker can make a victim’s
browser issue requests, let us first look at the complete attack scenario.

5Google, for example, offers an overview of all your searched queries at http://www.google.
com/searchhistory/.

6http://www.google.com/ig
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3.4.1 Attack scenario

The CSRF attack is made up out of the following steps (assuming that the victim is
already authenticated at the target website) [94]:

1. The attacker forces the victim’s browser to send a request to the server (we
will see how this happens in the next section). It is the attacker that chooses
the contents of this request.

2. The browser, thinking that a legitimate request is performed by the victim,
automatically attaches the victim’s authentication information. This authenti-
cation information can be in the form of a SID, HTTP Auth credentials, SSL
information, or even the user’s IP address [56, 122].

3. The browser sends the request to the target server. This server uses the
request’s authentication information to determine that the request was made
by the victim. Thus, the server executes any action that was requested by the
attacker as if the victim requested it.

The different steps of the CSRF attack are graphically illustrated in Figure 3.4.

Figure 3.4: The cross site request forgery attack

3.4.2 Forcing the browser to make a request

As was the case with the previous attacks, there are several possibilities to execute a
CSRF attack. In this section, we describe the most important methods an attacker
can use for compelling the victim’s browser into issuing a cross-site request.

Via the <img> tag

The <img> HTML tag is normally used for including images in a web page. However,
the <img> tag can also be abused by an attacker for issuing cross-site requests. For
this, instead of providing the URL to an actual image, the attacker provides a request
URL containing GET parameters. This will cause the victim’s browser to issue the
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request when it tries to load the image as part of the current page [56]. If the attacker
is able to insert images into a trusted website (as is often the case in bulletin boards),
he can make a victim issue the request when he visits the trusted page containing
the image [10]. The <img> tag can only be abused by an attacker for issuing requests
that contain GET parameters.

Via cascading style sheets

Cascading style sheets (or CSS, not to be confused with XSS) are used for defining
the appearance of a web page. They include the colors, fonts, and placements for
elements on a web page. Similar to using the <img> tag for issuing requests, the
<link> tag, which is normally used to load external CSS styles can be used to issue
requests [50]. For this, the attacker sets the URL of the style sheet to the request
URL containing the GET parameters. This will cause the victim’s browser to issue
the request when it tries to load the style sheet for the page. As was the case with
the previous method, cascading style sheets can only be abused for issuing requests
that contain GET parameters.

Via forms

When the target web application uses POST instead of GET parameters for the
request the attacker wants to execute, an HTML form can be used to perform the
request. When a form is submitted, the browser issues a request containing the form
elements with their values as POST parameters.

An attacker can create a form containing elements that have the desired values.
He must then force the victim’s browser to submit the form, which can be done by
either tricking the victim into submitting the form manually, or by having the form
submit automatically using JavaScript.

Tricking the victim into submitting the form can be relatively easy: all the
attacker has to do is assure that the victim will click the submit button. This can
be achieved by hiding all form elements except for the submit button, and making it
seem like the button serves some other purpose. This approach is taken even further
by Mao et al. [69]: they noticed that, even when it is required that the actual submit
button of the trusted site is pressed (as is the case when some CSRF countermeasures
[58, 54] are in place), a victim can still be tricked into triggering the browser to make
a request that he did not want it to perform. This is done by including an iframe7

containing the original form into the attacker’s website, while making only the form’s
‘post’ button visible to the victim. The hiding of other parts of the form is achieved
by resizing and auto-scrolling the iframe. The result of executing such an attack in
order to make a victim unwillingly post something on his own Facebook profile page
is shown in Figure 3.5.

An attacker can also make the form automatically submit in the victim’s browser.
For this, he needs JavaScript capabilities on the page where the form is located. An

7An iframe is an HTML tag which allows a HTML page to be embedded within a parent HTML
document.
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(a) the original form (b) a malicious page including only
parts of the form in an iframe, try-
ing to trick a user into clicking the
button

Figure 3.5: Tricking a user into submitting a form [69]

attacker has these capabilities when the form is hosted on the attacker’s domain
(which then needs to be visited by the victim), or when the form is displayed on
a page where the attacker can execute an XSS attack (see section 3.1). To access
the form, the attacker can use the forms DOM element, which contains a list of all
forms on the page. Automatically submitting the form can then be done by inserting
a line of JavaScript similar to

<script> document . forms [ 0 ] . submit ( ) </ script>

into the HTML code of the page [58].

CSRF and the same origin policy

The SOP (described in section 2.2) limits JavaScript access to DOM objects that
have the same origin as the page which contains the script. Although this prevents
JavaScript from accessing DOM objects from another domain, it does not prevent
JavaScript from making requests to another domain [24]. Thus, the same origin
policy does not have any effect on CSRF attacks.

3.4.3 Other ways of forcing the browser to make a request

Technically, cross site request forgery attacks always automatically issue a request to
a different domain. In this section, we describe some other methods an attacker can
use to make a victim’s browser issue a request. Note that, although these methods
can be associated with cross site request forgery attacks, they are technically different,
because they do not issue a request from one domain to a different domain, or because
they can not be used to issue a request automatically.
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Via crafted URLs

The simplest method for an attacker to make a victim’s browser issue a request is to
trick the victim into clicking a crafted an URL containing the desired request and its
GET parameters. When the victim clicks the URL, the browser will automatically
issue the request together with its parameters. Tricking the user into clicking the
URL can be done either by phishing [25], or by embedding the URL in a trusted web
page in a manner similar to the XSS attack described in section 3.1. Because URLs
can only hold GET parameters, this method can not be used for issuing requests
that contain POST parameters.

Via asynchronous requests

If the attacker is able to perform an XSS attack, he can inject JavaScript code
which uses the XMLHttpRequest object to perform an asynchronous HTTP request.
The complete specification of this object is available at [111]. We only provide the
following small example of its use [109]:

var c l i e n t = new XMLHttpRequest ( ) ;
c l i e n t . o p e n ( "POST" , " t r an s f e r . php " ) ;
params = " to=at tacke r&amount=50000 " ;
c l i en t . s e tReque s tHeade r ( " Content−type " , " app l i c a t i o n /x−www−

form−ur lencoded " ) ;
c l i en t . s e tReque s tHeade r ( " Content−l ength " , params. length ) ;
c l i en t . s e tReque s tHeade r ( " Connection " , " c l o s e " ) ;
c l i e n t . s e n d ( params ) ;

An asynchronous GET request can be made in a similar fashion. Differences are
that the parameters are now appended to the URL instead of passed to the send()
function, and that the HTTP headers don’t have to be explicitly set.

Via an active man-in-the-middle attack

An active network attacker (or ‘active MitM’) does not need the victim’s browser to
submit the request: he can simply modify any request sent by the victim to contain
the URL and parameters he wants [10]. However, as we noted when describing the
session hijacking and session fixation attacks, an attacker is likely to have better
options for attack when he is an active MitM. Indeed, an active attacker will always
have the ability to intercept a victim’s SID, causing him to be able to issue requests
in name of the victim himself.

Table 3.1 summarizes for each of the methods discussed in this and the previous
section whether requests can be automated, and whether cross-domain requests are
allowed to be made. The table also lists whether a certain method can be used to
issue GET requests, POST requests, or both. As we noted in section 3.3.2, however,
some websites which normally use one of those two methods also accept requests
issued using the other method [122].
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GET requests POST requests automatable cross-domain
<img> tag X X X

CSS X X X
Form X X X

Crafted URL X X
Async. request X X X
Active MitM X X X

Table 3.1: Comparison of different methods for forcing a browser to make a request

3.5 Conclusion
In this chapter, we discussed the ways in which an attacker can abuse session
management in web applications. We described the XSS attack, wherein an attacker
exploits the fact that a web application returns user generated content to execute
script code in another user’s browser. Next, we described the session hijacking attack,
wherein an attacker captures another user’s session identifier in order to impersonate
the user at the web application. The session fixation attack works similarly, with the
only difference being that instead of capturing another user’s session identifier, the
attacker imposes his own session identifier upon the other user’s web browser. We
ended our discussion of session attacks with a brief discussion of the CSRF attack,
wherein an attacker uses the implicit authentication in another user’s browser to
issue requests as if they came from the other user. For all three attacks, we discussed
different attack vectors that can be used to execute it. While the attacks themselves
are not very complicated, these attack vectors allow an attacker to create complex
attack scenarios which are difficult to protect against.

From the next section on, we will only consider the session hijacking and session
fixation attacks to be in scope. Lots of work has been published about CSRF attacks,
and covering it all would lead us too far.
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Chapter 4

Session attack countermeasures

In this chapter, different countermeasures to the session hijacking and session fixation
attacks are discussed, together with a detailed analysis of their shortcomings. We
first describe some general security measures that a web developer can take to
secure his web application. Next, we inspect different web frameworks to see how
well they apply these principles. Afterwards, we give an overview of standalone
countermeasures, both at the server side and at the client side, that were developed
over the years. We close with a brief description of some solutions to cross-site
scripting (XSS) attacks, because of their importance in session attacks. We do not
consider solutions to cross site request forgery here, since these would lead us too far.

4.1 General security measures
Different security measures may be taken by web application and web framework
developers to secure their web applications. In this section, we discuss to what extent
these measures provide security against session hijacking and session fixation attacks.

4.1.1 Renewing the session identifier

The practice of renewing the session identifier (see section 2.3.3) can provide excellent
protection against login session fixation attacks. Indeed, if the web application
renews the session identifier every time the authentication status of a user changes,
the SID which was enforced by the attacker will cease being valid once the victim
has logged in. As an example, renewing the SID in PHP can be accomplished by
using the following code snippet [87, 55]:

i f ( $au then t i c a t i on_suc c e s s f u l ) {
$_sess ion [ " authent i ca ted " ] = true ;
s e s s i on_regenerate_id ( ) ;

}

To make sure that the session identifier is changed on every authentication change,
it can be made to contain specific user information (like the username). In this case,
when the authentication state changes, the session identifier has to change with it.
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Note that such an approach needs a MAC, created by the server using its private
key (as described by Fu et al. [45]), to be included as part of the SID. Otherwise, an
attacker would still be able to simply replace the username in the value of the SID
himself.

Renewing the session identifier regularly is also benefical for preventing session
hijacking attacks. As was discussed in section 2.3.3, the shorter the lifetime of a
session identifier, the more difficult it will be to capture, and the less useful it will
be if it has been captured [45].

Keeping in mind the previous discussion, one might assume that it is best to
renew a session identifier as often as possible. Consider, however, the case where
the session identifier is renewed on each request. In this case, every request would
result in a new session cookie being set at the user’s browser, with the old session
cookie being invalidated. When issuing concurrent requests (for example, when
simultaneously loading different images on a web page), the web application would
only acknowledge the first request that arrived at the server. The second request
would contain the (by then) invalidated session identifier, causing it to be rejected.
Because of this, the browser would be allowed to issue only one request at the same
time. Similarly, this would pose a problem when browser plugins communicate with
the server, as well as with asynchronous requests. Another drawback of this approach
is that web applications making use of multiple servers (to allow for load balancing)
would have to synchronize their users’ SIDs on every request [23]. Otherwise, a user
would have to re-authenticate every time a page is served by a different server. A
last problem with this approach is that the server would have to issue an extra write
to the database on every request, in order to update the SID.

4.1.2 Using HttpOnly cookies

When setting a cookie in the user’s browser, a web server can use the cookie’s
HttpOnly flag to indicate that the browser should only allow access to this cookie
via HTTP. As a consequence, script code will not be able to access or edit the value
for such a cookie, and session hijacking via XSS attacks can be prevented [72].

Session fixation, on the other hand, is not solved by using HttpOnly cookies.
Indeed, when the attacker sets the cookie before the web server does, he is the one
who can decide whether the HttpOnly flag is set. Thus, the web developer would
have to make sure that a cookie is always set before an attacker can set it.

Moreover, even if the web server is able to set the (HttpOnly) session cookie
before the attacker does, the attacker is still able to perform a successful session
fixation attack via XSS. As Singh et al. have shown, it is sometimes still possible
for an attacker to manipulate a HttpOnly cookie via JavaScript after it has been
set [98]. Fortunately, our experiments show that the issue of Firefox allowing cookie
writes to HttpOnly cookies has since been solved.

Nevertheless, we discovered yet another technique which allows an attacker to
circumvent the HttpOnly browser policy. As we described in section 3.3.2, the
attacker is often still able to set a cookie with the same name as the session cookie
for the parent domain. This causes the browser to send both the parent domain
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cookie and the subdomain cookie when a page on the subdomain is accessed. Since
the domain attribute is not attached to cookies in the request, the server has no way
of distinguishing between the injected and the legitimate cookie. As such, we must
conclude that, while marking a cookie as HttpOnly does prevent an attacker from
accessing the cookie via JavaScript (thus mitigating the session hijacking attack via
XSS for these cookies), it does not prevent him from using XSS to inject a chosen
value for this cookie into the victim’s browser.

4.1.3 Using secure connections

Secure connections [100] can be used to make sure that all data between the client
and server is encrypted. For this, the SSL protocols are used. These protocols
provide both data confidentiality and authentication, as well as optional server and
client authentication. Thus, secure connections can be used to ensure that a session
identifier can not be intercepted by a passive MitM attacker. In this case, as already
noted in section 2.3.2, care must be taken that cookies can never be sent over an
insecure connection. This can be done by setting the secure flag for cookies that
will be used only over an SSL connection.

Recently, some work has been done to make deployment of HTTPS more
widespread [48, 52]. Unfortunately, there are still some drawbacks to using HTTPS
for every page [1]. At the server side, HTTPS is very costly: every connection
needs computationally intensive SSL operations to be performed. At the client side,
browser caching works differently under SSL, and websites have to be completely
transmitted before they can be rendered (because the validity is checked for the
entire page).

4.1.4 Checking request headers

Similar to the Cookie header we discussed in section 2.1, a HTTP request can contain
many other headers [42]. Some of these headers provide information that can be
used to identify a user. For example, the User-Agent header contains information
about a user’s browser and operating system, while the Accept-Language header
lists the languages the user is willing to receive.

A web server can gain some extra certainty about whether it is interacting with
the user corresponding to the session ID in the request by comparing some of the
header values to those in the last request that contained the same session ID. Indeed,
because an attacker is probably using a configuration which is different from the
victim’s, the attacker’s requests will have different header values. Thus, when certain
header values differ between requests, it is possible that a session hijacking or session
fixation attack occurred.

The question is then: which headers could be considered to give enough user-
specific information, without changing over time? The User-Agent header is obvi-
ously the best candidate. Unfortunately, web proxies are known to modify this header
[97]. Another header which could be considered is the Accept header, which lists the
types of content the user’s browser will accept. The problem with this header is that
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in Internet Explorer, its value can change over time [97]. The Accept-Language
header could be checked. However, different browsers are likely to contain the
same default value (en-US) for this header. The same goes for the Connection and
Cache-Control headers. Other headers are too susceptible to change, and should
not be used for the purpose of asserting authentication.

Another problem with using HTTP headers for this purpose is that they are
easily guessed by an attacker. Indeed, for most headers, only few options are possible,
with even less options being very probable. Furthermore, even in the case that an
attacker would not be able to guess the header values, he only needs to read a single
request (to whatever server) from the victim to know what header values to use. He
can get a request from the victim by intercepting it, or by tricking the victim into
visiting his own website.

Thus, while checking request headers might raise the barrier for attackers, it is
by no means a complete solution against any of the described session attacks.

4.1.5 Checking the IP address

Similar to request headers, the IP address can be used by the web server to ensure
it is interacting with the same user as before. Unfortunately, this approach also
suffers from some problems. Firstly, IP addresses can be guessed or captured in
much the same way as HTTP headers. An attacker can then easily change the source
IP address for his own packets to impersonate the victim. Secondly, when both the
victim and the attacker are behind the same NAT proxy (as is often the case in
session hijacking attacks over a wireless network), they are using the same IP address
[55]. In this case, the server can not distinguish the attacker and the victim based
on IP address. Lastly, requiring that the IP address stays the same over time can
also cause some problems to the legitimate user: with users changing the location
of their notebook or cell phone, the IP addresses of these devices will change when
roaming, causing them to be denied access to a web application that checks their IP
address. Moreover, some networks only issue dynamic IP addresses to their users.
Because of these reasons, it can not be assumed that a user is uniquely tied to a
single IP address.

As was the case for checking other request headers, checking the IP address can
not be considered a complete solution to any session attack.

4.1.6 Rejecting crafted session identifiers

An often suggested countermeasure to session fixation attacks is to reject session
identifiers that were not previously issued by the web application. While this does
make the attack slightly harder to execute, it does not prevent it. This is clear from
the session fixation attack scenario described in section 3.3.1, wherein an attacker
establishes a new session which he subsequently transfers to the victim.
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4.1.7 Cookies vs. URL rewriting and form elements

As we described in section 2.1, there are three major methods for doing session
management: via cookies, via URL rewriting and via form elements. We compare,
from a security perspective, the advantages and disadvantages of these methods here.

Two major disadvantages of URL rewriting were already discussed in section
3.2.2: firstly, the session identifier can leak when a link is shared with someone else
(for example, via e-mail or a social networking site) [57]. A leak can also occur
when the referer HTTP header is included in a request to another website: since
the URL in the referer header contains the user’s session identifier, this identifier is
visible to the other website [45].

A disadvantage which is shared by both the ‘URL rewriting’ and ‘form elements’
methods is that the injection of a session identifier (with the objective of executing a
session fixation attack) requires little effort from an attacker. Indeed, as we saw in
section 3.3.2, such an injection attack is reasonably straightforward.

There is, however, also an advantage of choosing URL rewriting or form elements
over cookies, in particular when looking at the cross site request forgery attack. Recall
that, to execute a CSRF attack, an attacker tricks the victim’s browser into issuing a
request. For this, he has to create a URL or a form containing the right GET/POST
parameters for the attack. However, if the SID is one of the parameters that must
be included in the request, the attacker does not know all required parameters, and
is therefore not able to create a complete request [57].

It is clear that choosing which method to use for managing sessions requires
careful weighing of the advantages and disadvantages of each method. It could
be argued that cookies provide more security since they make leaking of session
identifiers less likely. Indeed, it is often recommended to use cookies instead of
URL rewriting for session management [123, 110]. An even better option is to use a
combination of cookies and POST or GET parameters. This is indeed what many
CSRF countermeasures try to do [58, 54]. In addition, some (mobile) web browsers
don’t support cookies, requiring the use of either POST or GET parameters when
session management is needed.

4.1.8 Using an alternative to web sessions

There are also other – in some cases more secure – methods for a web server to know
which user it is interacting with. We describe three alternatives to web sessions here.

Logging in for every request

Arguably the most secure way to determine whether a user is who he claims to be, is
to make him enter his credentials for every request. It is obvious that this is very
cumbersome for the user, who has to go through the process of logging in every time
he requests a new web page. It is, however, good practice to require the user to log
in for certain actions [115]. Indeed, consider the case where an attacker was able to
take over a victim’s temporary session. If no login is required to change the user’s
password, the attacker can completely take over the victim’s account by changing
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the password to a value only he knows. Similarly, if the attacker is able to change
the victim’s e-mail address without having to enter the password, he can use the
website’s password recovery feature to have a password for the user’s account sent to
his own mailbox.

HTTP-Auth

In HTTP Authentication [43], a separate HTTP header (called Authorization) is
used to transfer the user’s credentials on every request. These credentials are often
cached by the browser to relieve the user from having to enter them every time he
requests a web page. A disadvantage of this approach is that the username and
password are sent encoded (with the Base64 algorithm) but not encrypted, causing
them to be available to a passive MitM if no secured connection is used. Another
disadvantage is that, since HTTP Authentication is completely handled by the HTTP
stack, it is a much less flexible approach than web sessions. For example, there is no
easy way for the user to log out (since the browser caches his credentials), and the
server-side HTTP stack needs to have full access to the user database [1].

HTTP-Digest

HTTP-Digest is a variant of HTTP-Auth that uses encryption instead of just Base64
encoding [43].This has the advantage that the user’s credentials can not be intercepted
by a passive MitM attacker. Unfortunately, this method is still vulnerable to active
MitM attacks. It also suffers from the same inflexibility issues that are associated
with HTTP-Auth.

SSL client certificates

When secure sessions (see section 4.1.3) are used, mutual authentication can be
achieved when both server and client possess a SSL certificate [83]. The problem
with this approach is that many clients don’t have certificates, and that certificate
management is still too difficult for most regular users [116]. Moreover, a user needs
to have its certificate installed on every device he wants to use to access the web
application, which is not practical in the current world where people use smartphones
and public computers to access web applications.

4.2 Session security in web application frameworks
Often, web applications are built on top of a web application framework. A web
application framework provides a web developer with the core functionality of a
web application [95]. This core functionality typically consists of elements like user
session management, data persistence, and templating systems used to dynamically
render web pages. It is upon the foundations provided by these frameworks that
many dynamic web applications are built.

In this section, we describe the measures that are taken in some widely used
frameworks to ensure security against session hijacking and session fixation attacks.
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We consider only the renewing of the SID, the use of secure connections, and the use
of GET and POST parameters for session management, because these are the security
measures that are most eligible to be included in a web application framework. The
list of frameworks is by no means complete[117], but gives a good overview of how
popular frameworks handle session attacks.

4.2.1 Tomcat

Apache Tomcat1 is a much-used software implementation of the Java Servlet and
JavaServer Pages technologies. It powers the websites of a.o. WalMart, Wolfram
Research and CiteSeerX [108].

Renewing of the session identifier on authentication is automatically done since
Tomcat 6.0 [107]. In previous versions (since 5.5), it is possible to enable this
behavior by setting the changeSessionIdOnAuthentication configuration attribute
in Tomcat’s Authenticator Valve [106].

Tomcat uses cookies for session management, but also accepts SIDs that are
included in the URL. URL rewriting is also used by default when the client’s browser
does not support cookies. It is possible for a web developer to disable this behavior,
and to obligate Tomcat to only accept SIDs in cookies. This is, however, rather
cumbersome, because it requires the implementation of a filter that intercepts requests
and disables the session IDs from their URLs [21].

Secure connections can be managed managed by either the JSSE or the APR
SSL implementation. To enable Tomcat to use secure connections, the web developer
must set the protocol attribute of the Connector configuration entry to use one
of these two implementations [105]. A cookie can be set with the secure flag by
using the setSecure() method of the Cookie class [104]. Session cookies that are
set using an HTTPS connection automatically have the secure flag enabled [92].

4.2.2 Alfresco

Alfresco2 is a complete content management system that runs on a J2EE application
server like Tomcat [108]. It is used by companies like France AirForce, Cisco, Fox
and KLM [4].

Alfresco neglects to renew a user’s session identifier when he logs in. We tested
the behavior using Alfresco’s demo server3 and found that a session fixation attack
is, indeed, possible. Further investigation showed that a bug which addresses this
issue was already reported [64]. Unfortunately, the bug already dates from October
2008 and has not been solved since. Requesting more information about session
management in Alfresco on their IRC channel or in the Alfresco forums proved
fruitless.

If Alfresco is deployed on top of Tomcat, session management and secure connec-
tions work in much the same way as they do in Tomcat.

1More information about Tomcat is available on its website: http://tomcat.apache.org/.
2More information about Alfresco is available on its website: http://www.alfresco.com/.
3An account for the demo server can be obtained from http://www.alfresco.com/try/.
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4.2.3 Ruby on Rails

Ruby on Rails4 (or RoR, for short) is a web framework written in the in 1995
conceived Ruby programming language. It is used in popular web applications like
Twitter, Groupon and Github [89].

Renewing the session identifier is not automatically done on each authenti-
cation state change in RoR. There is, however, a supported way of implement-
ing this: invalidating the old SID can be done by adding reset_session to the
SessionsController#create action [115]. The official documentation advertises
this solution as only requiring one line of code, but mentions that session state must
still be manually copied.

RoR supports only cookie-based session management by default. If the web
developer wants his web application to use URL rewriting instead, he needs to
specifically enable this [71].

To make a RoR web application use secure connections for certain pages, the
ssl_requirement plugin5 can be used. This plugin allows to specify for which
pages the HTTPS protocol should be used [99]. Making sure that certain cook-
ies are only sent over secured connections only requires the configuration option
ActionController::Base.session_options[:secure] to be set to true (this op-
tion is set to false by default).

4.2.4 Django

Django6 is a web framework built using the Python language. It is used by a.o. Ars
Technica and The Washington Post [29].

Django renews the session identifier automatically when a user logs in. For this,
two possible cases are considered [31]:

• If the login request contained a session identifier that corresponds to another
logged in user, or if the request did not contain a SID at all, a completely new
session is created.

• If the login request contained a session identifier that is not yet associated
with a logged in user, a new SID is created. This SID is then associated with
the state corresponding to the old SID [32]. The old SID is removed from the
database, so it can not be used in the future to access the session information.

SIDs are only accepted via cookies in Django. This is a very clear-cut design
decision [30], and requires the web developer to write his own middleware if he wants
the web application to use POST or GET parameters instead [40].

Secure connections are handled by the underlying web server, and configuring
certain pages to require HTTPS connections should be done in the configuration files
for the web server. However, to make sure that Django will set the secure flag for

4More information about Ruby on Rails is available on its website: http://rubyonrails.org/.
5The ssl_requirement plugin is available at https://github.com/rails/ssl_requirement.
6More information about Django is available on its website: http://www.djangoproject.com/.
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all session cookies, the setting SESSION_COOKIE_SECURE = True should be added to
Django’s settings.py [8]. This configuration setting is disabled by default [49].

4.2.5 CherryPy

CherryPy7 is another web framework built using Python. It tries to make building
web applications as similar as possible to developing any other object-oriented Python
program.

The CherryPy documentation claims that CherryPy provides protection against
session fixation attacks [19]. In reality, however, only crafted session identifiers8 are
prevented. Indeed, it is still possible for an attacker to establish a session by visiting
the web application himself, and to impose this session on a victim. To execute a
successful login session fixation attack, the only thing required is that some data
is tied to the attacker’s session, since CherryPy only considers a session identifier
to be permanent if some server state is attached to it. The fact that CherryPy is
vulnerable to session fixation attacks was already discovered earlier by Schrank et al.
[93].

CherryPy manages sessions exclusively via cookies [19]. As a consequence, session
identifiers will not be accepted as GET or POST parameters.

As with Django, secure connections are handled by the underlying web server.
By default, CherryPy does not set the secure flag for any cookies. To enable
this flag for all session cookies, the session object should be initialized (by calling
cherrypy.lib.sessions.init()) with the secure parameter set to True [19].

4.2.6 PHP

PHP9 is a scripting language used for web development. While PHP is technically
not a web framework, we include a discussion of PHP’s session module in this section
because PHP is estimated to be the server scripting language for over 75% of all
websites [113].

Since PHP only supports the concept of sessions, and not that of users, there is no
way for PHP to know when the authentication state has changed. As such, PHP does
not renew the session identifier automatically when needed. Session fixation preven-
tion can however be easily implemented by calling the session_regenerate_id()
function every time a user’s authentication state changes (e.g. in the login function),
similar to the code snippet provided in section 4.1.1.

By default, PHP uses cookies for session management, but also accepts session
identifiers passed via URLs [49]. To change this behavior, the line

php_flag s e s s i o n . use_trans_sid of f

should be set in the web server’s .htaccess configuration file. Alternatively, the line
7More information about CherryPy is available on its website: http://cherrypy.org/.
8Recall from section 3.3.1 that a crafted session identifier is an SID which was not generated by

the server in advance.
9More information about PHP is available on its website: http://php.net/.
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ini_set ( ’ s e s s i o n . use_trans_sid ’ , fa l se )

could be added to the PHP code. Note that the previous example only works when
an Apache-based web server is used to serve the PHP pages (which is most often the
case) [11].

To use secure connections, PHP must be compiled with the –with-openssl
parameter. To make sure that PHP sets the secure flag for all session cookies, the
line

s e s s i o n . cook ie_secure = 1

should be added to the php.ini config file [86]. Alternatively, the session_set_cookie_params()
function could be called with the parameter secure set to true for every request
[88]. By default, cookies don’t include the secure flag.

4.2.7 Drupal

Drupal10 is a complete content management system written in PHP. It powers the
websites of The Economist, Symantec, and even The White House [35, 6].

Drupal automatically renews the session identifier when the user’s authentication
state changes [37]. It does this by calling PHP’s session_regenerate_id() function
[34]. While this has always been the default behavior of Drupal, some bugs were still
present in versions preceding Drupal 5.9 and 6.3 [33].

Drupal makes sure that PHP’s underlying session mechanism will only accept
session IDs via cookies. It does this by calling the previously described ini_set()
function with the relevant parameters during initialization [36]. Unfortunately, prob-
lems are still known to occur for some web hosts, for which the relevant parameters
should be added to PHP’s .htaccess file manually [39].

Secure connections and secure cookies in Drupal are handled via PHP’s mech-
anisms. However, Drupal’s ‘Secure Login’ module can be used to force certain
pages to be loaded over a HTTPS connection [44]. To make sure that every
cookie set over HTTPS has the secure flag enabled, this module also sets the
session.cookie_secure flag to true since Drupal 7.

4.2.8 Overview

A summary of session security in the discussed web application frameworks is given in
Table 4.1. As we can see, the popular high-level frameworks in our list (RoR, Drupal,
Django) provide pretty good protection against session attacks, which reinforces our
recommendation to use a high-level framework whenever possible (see section 2.3.4).
Using a framework, however, does not relieve the web developer from making sure
that all components are configured correctly.

10More information about Drupal is available on its website: http://drupal.org/.
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Renews SID Only accepts secure flag for
on auth cookie-based SIDs SSL session cookies

Tomcat since version 6 implementable default
Alfresco no implementable default

RoR configurable yes configurable
Django yes yes configurable

CherryPy no yes configurable
PHP no configurable configurable

Drupal since version 5.9/6.3 yes via module

Table 4.1: Comparison of session security in different web application frameworks

4.3 Server-side countermeasures
In this section, we describe some standalone server-side countermeasures to session
hijacking and session fixation. These should be deployed separately, and are not part
of any web framework.

4.3.1 Deferred loading (SessionSafe)

SessionSafe is a combination of different solutions to session attacks proposed by
Johns et al. in 2006 [54]. One of these, called ‘deferred loading’, was created
specifically for session hijacking.

The reasoning behind deferred loading is that cookies should be separated from
the content of a page, to prevent an attacker from using the page content to
steal the cookie. This is achieved by setting the cookie on a different subdomain
(secure.example.org) than the web page itself (www.example.org). A page is then
requested as follows (see Figure 4.1a):

1. Instead of getting the page directly, the user’s browser requests a ‘page loader’
from the server. This page loader is a small HTML page that contains logic
which will be executed at the client side to fetch the actual page.

2. The page loader makes the browser send the user’s cookie to secure.example.
org, and a request for the actual page to www.example.org. In both requests,
the browser includes the same request ID, which was sent by the server as part
of the page loader.

3. The web server checks that the cookie is correct, and that both requests were
issued with the same request ID (and thus by the same page loader). If this is
the case, it sends the requested web page as a response, and it invalidates the
request ID for future requests.

4. The page loader displays the actual web page in the user’s browser.

Because the cookie needs to be set for a different subdomain than the one the
page is served from, it can not simply be included in the Set-cookie header of the
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(a) Requesting a page (b) Setting the cookie

Figure 4.1: Deferred loading of a cookie [54]

HTTP response. Instead, an ‘image’ is included on the returned page, which is
served from the domain secure.example.org. When the user’s browser requests
the image from this domain, the server is able to set the cookie in the response. The
process of setting a cookie is graphically depicted in Figure 4.1b.

Deferred loading prevents session hijacking via XSS attacks. Indeed, when an
attacker is able to inject script code in a web page on the www.example.com domain,
this code has no access to cookies stored issued by secure.example.com. Because
the page content itself is always served from the www.example.com domain, an
attacker will never have the ability to access content on the secure.example.com
domain.

Note that this approach does not prevent an attacker from executing a session
fixation attack. Indeed, although script code is unable to access cookies stored
in a different subdomain, it is able to set cookies for its parent domain, as was
discussed in section 3.3.2. This allows an attacker to inject script code in a page
hosted on www.example.org that sets a cookie for the domain example.org. Since
secure.example.org is also a subdomain of example.org, requests made to this
domain will contain the injected cookie.

4.3.2 SessionLock

SessionLock, proposed by Adida et al. in 2008 [1], tries to solve session hijacking by
making session identifiers only available at the client side. For this purpose, fragment
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identifiers are used.
Fragment identifiers are mentioned in the URL specification [12] as a means for

making the user’s web browser scroll to a certain part of a web page. The fragment
identifier is included in the URL as the part that follows the # character. For example,
the URL http://www.example.org/document.html#paragraph4 has paragraph4
as its fragment identifier. Loading this URL in the browser will cause the browser
to request document.html from the web server, and to jump to the element on that
page which is identified by the string paragraph4. If no such element is available
on the page, the web browser will simply ignore the fragment identifier part of
the URL. Fragment identifiers are not sent to the web server on a request, but
are instead handled by the browser to jump to the correct part of the page once
it is loaded. The fragment identifier is available to client-side JavaScript via the
document.location.hash DOM element.

It is in such a fragment identifier that SessionLock stores the user’s SID. Interac-
tion between the user’s browser and the server happens through the following steps
(also depicted in Figure 4.2):

1. The user authentication happens over a secure (HTTPS) connection. If the
authentication is successful, the web server sets the SID as a secure cookie, and
redirects the user to a URL that includes the SID as its fragment identifier.

2. Subsequent requests are made over an insecure (HTTP) connection, and thus
do not include the cookie set in the previous step. Instead, the user’s browser
attaches to every request a MAC, generated with the (secret) SID, of the tuple
(request-URL, timestamp). To avoid having to modify the user’s browser to
execute these steps, a small piece of JavaScript code is included in the page.
This JavaScript code intercepts all user requests, and attaches a timestamp
and MAC to every request before it is forwarded to the server.

By making session identifiers only available at the client side, a MitM attacker is
not able to capture the SID since it is never sent over the network. The authentication
happens over a secure connection because otherwise, the SID would still be sent
over an unencrypted channel when it is set by the server. A variant which uses the
Diffie-Hellman protocol [28] instead of encrypted connections when authenticating is
also presented in the paper [1].

A major advantage of this approach is that, while users use HTTPS to authenticate
(and thus never have their password sent in clear text), a secure connection is not
required for subsequent requests. This eliminates the biggest drawback associated
with using SSL, namely that of high costs (see section 4.1.3).

To make sure that the SID is remembered at the client side, JavaScript code
is included in every page returned by the server. This code rewrites all URLs
on the page to include the SID as a fragment identifier. Note that the server
cannot rewrite these URLs itself, because then the SID would be visible on the
network when the page is returned to the client. In case the SID does get lost,
JavaScript can still recover it by opening an invisible iframe which loads the URL
https://example.org/login/recover over a secure connection. Within this secure
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Figure 4.2: The SessionLock protocol, with SSL data indicated in green [1]. Note
how the use of the fragment identifier effectively creates a client-only channel from
one page to the next.

connection, the secure cookie which was set in step 1 will be available. Thus, all
the JavaScript code has to do is get the SID value from this cookie, and reload the
current page with the SID appended as the fragment identifier.

It is important to note that this session hijacking countermeasure only protects
against passive MitM attacks and against the SID leaking via the Referer header.
It does not protect the user from accidentally leaking his SID by forwarding a URL
[1]. Moreover, it does not protect the user from active attacks. Indeed, since the SID
is stored in a way which makes it available to JavaScript, an attacker performing
an XSS attack will still be able to access the SID [23]. For the same reason, the
proposed countermeasure does not protect against session fixation either.

Another disadvantage of this approach is that it is only usable for URLs that
can be rewritten using JavaScript. Indeed, when binary objects (i.e. Flash) are used
to generate dynamic links, URL rewriting will not work [23].

4.3.3 One-time cookies

In a paper written by Dacosta et al. [23], a solution to session hijacking is proposed
wherein session identifiers are replaced by one-time cookies which are renewed on
every request. This is done as follows:

1. The user authentication happens over a secure (HTTPS) connection. In this
authentication, a secret seed and a session secret are generated.
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2. Subsequent requests are made over an insecure (HTTP) connection. In the i-th
request, the user’s browser attaches the outcome of a hash function applied
i times to the secret seed. Also attached is the current sequence number (i,
in this case), the user’s username, a nonce, and – most importantly – a MAC,
generated with the session secret established as part of the authentication, of
the triplet (username, request-URL, hash outcome).

It is crucial that the server only allows requests containing a sequence number higher
than the last one received. This prevents attackers from replaying captured one-time
cookie information. Since the attacker does not know how to generate the next
one-time cookie from a previously captured one, and because a previous cookie
can not be replayed, the approach renders a captured cookie essentially worthless.
Moreover, the request-URL is included in the MAC to make sure that a certain
one-time cookie can only be used to access one specific resource.

To prevent the session seed and session secret from leaking via XSS attacks, both
are made inaccessible to JavaScript code. This is viable for two reasons: firstly, the
client modification that is needed for one-time cookies to work is implemented as a
browser extension, which makes it able to separate the authentication information
from the page itself. Secondly, because one-time cookies will be exclusively used for
authentication purposes, other cookies that need to be accessible via JavaScript can
still be used in the regular way.

Aside from preventing session hijacking attacks, this approach will also prevent
login session fixation attacks. Indeed, as soon as the user authenticates, a new session
secret and secret seed – both unknown to the attacker – are established. This is
similar to renewing the SID on every authentication change. Other session fixation
attacks are also prevented as long as an attacker is not able to interfere with the
client-side part of the implementation.

Because the sequence number is part of the request, the server knows how many
times the hash function should be applied to the secret seed. Naturally, the server
does not need to apply the hash function i times for every request. The computational
overhead can be greatly reduced by remembering the previous result, and applying
the hash function only i− i′ times (where i′ is the number of times the function was
applied to get the previous result) to this value.

As was the case with SessionLock, one-time cookies also use HTTPS for authen-
tication and HTTP for all other requests, combining the security of HTTPS with
the speed of HTTP.

Possible disadvantages of an approach that uses a new SID for every request were
discussed in section 4.1.1. However, these do not apply to this particular solution.
Firstly, because future SIDs do not need to be explicitly issued by the server, problems
with concurrent requests can be avoided by equipping every request with a higher
sequence number than the previous one. Similarly, asynchronous requests can be
issued with higher sequence numbers than the last issued request, and browser
plugins can be modified to use one-time cookies computed by the browser. Secondly,
server synchronization is less of a problem because the policy of the servers could
be relaxed to allow any sequence number in a request, as long as it is higher than
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the last one that was received. In this case, subsequent requests by a client could be
made to different servers, while synchronization between servers would be limited to
the moments a user authenticates. Note that this policy would permit an attacker
to replay a one-time cookie as long as he issues the request to a server different from
the one the user issued his request to. Fortunately, the damage is limited by the fact
that the one-time cookie can only be used to access one specific resource, thanks to
the request-URL which is included as part of the MAC.

Compared to using regular session IDs over an unencrypted connection, both
the client and the server need to perform more computations, and both have to
keep more state. However, as is shown in the paper, using secure connections for
every request is still much more computationally intensive [23]. Thus, requiring
some extra computation compared to using regular session IDs over an unencrypted
connection could be considered a minor trade-off to be able to provide secure user
authentication.

The paper also describes that in the current implementation, both the server and
the client need to be adapted to support one-time cookies. The authors are, however,
exploring the idea of modifying one-time cookies to provide a version that does not
require a browser extension [23].

4.3.4 Session fixation solution by Johns et al.

Johns et al. [55] present a solution to login session fixation attacks in the form of
a server-side reverse proxy. This allows web applications that have already been
deployed in the past to be patched against session fixation afterwards. The proxy
works by introducing a second session identifier, called the ‘proxy session identifier’
(or PSID), which is tightly secured against login session fixation. The proxy works
as follows (see Figure 4.3):

1. When a request without a PSID is received by the proxy, it is regarded as the
user’s first request. In this case, the proxy strips all authentication data from
the request and generates a new PSID value. The new PSID is then included
in the Set-Cookie header of the server’s response when the response passes
through the proxy.

2. When a cookie is set by the server (via the Set-cookie header), the proxy
associates the PSID that was sent in the request (or the new PSID, if no PSID
was present in the request) with the new SID from the server.

3. When a request containing a SID is received by the proxy, it checks whether
the attached PSID is valid for the attached SID. If it is, the PSID is stripped,
and the request is forwarded to the web server. If the PSID is not valid, or if
no PSID is present, both the PSID and the server’s SID are stripped from the
request before it is forwarded. This causes a request with an invalid PSID to
be void of any authentication data when it arrives at the server.

4. To make sure that the PSID is secure against login session fixation attacks,
a new PSID is generated – and sent to the user – whenever the user changes
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its authentication state. Note that ‘changing the authentication state’ is not
the same as ‘receiving a new SID from the server’, since it is possible that the
server does not correctly renew the SID on every authentication state change.

(a) Introducing the PSID

(b) Verifying the PSID

Figure 4.3: Protecting against login session fixation with a server-side proxy [55]

To see why this solution protects against login session fixation, consider the
scenario where the attacker was able to successfully force a SID and PSID upon the
victim’s browser. As soon as the victim logs in, his PSID is changed by the proxy.
When the attacker subsequently tries to make a request using the victim’s SID, he is
only able to include the old PSID into the request. Because the association between
the SID and the old PSID has been invalidated, the proxy will strip the SID from
the request before forwarding it to the server. This causes the attacker’s request
to behave as if it was an unauthenticated request, and prevents the attacker from
taking over the victim’s session.

To allow the proxy to detect when a user’s authentication state changes, the
web developer has to configure the proxy with the names of the GET and POST
parameters that contain password data. When such a parameter is present in a
request, the proxy considers it as an authentication request and renews the user’s
PSID.

The paper mentions that the same solution could also be applied at the frame-
work level, where it is often known which parameters contain password data. The
disadvantage of such an approach would be that the solution is then tied to a specific
framework, instead of universally deployable. Moreover, if the framework provides
session management, a much better solution is to make it renew the SID on every
authentication state change itself, instead of introducing a second SID (i.e. the
PSID).
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4.4 Client-side countermeasures

In this section, we focus on session hijacking countermeasures at the client side.
The advantage that these approaches have over server-side countermeasures is that
they protect a user against session hijacking, even when the web application itself is
not secure. Because of this, it is the user who can make sure that he is protected
against this kind of attack, without having to rely on the web developers of all
web applications he uses to implement session hijacking protection. Client-side
countermeasures to session fixation attacks were, to our knowledge, non-existent at
the time of writing [15].

4.4.1 SessionShield

SessionShield is a client-side proxy providing protection against session hijacking
attacks. It was proposed by Nikiforakis et al. in 2010 [78]. SessionShield is based on
the idea that session identifiers should not be available to code running in a user’s
web browser.

The proxy keeps session cookies unavailable to attackers by storing them outside
of the browser. It does this as follows (see Figure 4.4):

1. When a session cookie is set by the server (via the Set-Cookie header), the
proxy stores this cookie in his internal database, and strips it from the response
before it is sent to the client.

2. On every outgoing request, the proxy queries its internal database using the
domain of the request as the key. All cookies that are present in the database
for this domain are then added to the outgoing request.

(a) An incoming response containing a new SID.

(b) An outgoing request by the browser does not contain any cookies.
The proxy attaches the cookies for this domain that were stored in the
database.

Figure 4.4: Protecting against session hijacking with a client-side proxy

44



4.4. Client-side countermeasures

To identify which cookies are session cookies, SessionShield uses a sophisticated
SID detection algorithm. This algorithm considers a cookie to be a session cookie in
one of the following cases:

• The name of the cookie is in a list of known session identifiers, such as
phpsessid, aspsessionid and jspsession.

• The name of the cookie contains the substring “sess”, and its value is more
than 10 characters long.

• The value of the cookie passes a ‘SID probability check’, which consists of
checking the string’s information entropy, its correlation with the uniform
distribution, and the number of dictionary words contained in it.

SessionShield’s rationale is the same as that of HttpOnly cookies. However, the
approach is taken one step further: SessionShield makes sure that cookies will never
be visible in the browser, preventing an attacker from reading cookies even if he is
able to seize control over the victim’s browser in any way. This not only prevents
session hijacking via XSS attacks, it also prevents rogue browser extensions from
capturing a user’s session cookie [103]. Another advantage SessionShield has over
HttpOnly is that it works at the client side, allowing the user to be secure even when
the web application fails to set the HttpOnly flag for all session cookies.

Note that SessionShield does not protect against session fixation attacks. Indeed,
while SessionShield attaches additional cookies from his own cookie store, it does
not strip any cookies it received from the browser. Because of this, an attacker is
still able to inject a cookie in the user’s browser, which will then be forwarded via
SessionShield to the web server.

A disadvantage of implementing SessionShield as a proxy occurs when different
browsers are using SessionShield at the same time. In this case, the proxy will
attach cookies that were set for one browser to the other browser’s outgoing requests,
causing the user to be authenticated in both browsers when he has only explicitly
logged in with one of them. Moreover, clearing private data in the browser, or
using the browser’s ‘private browsing’ functionality, has no effect on SessionShield,
causing the user to be authenticated even when he expects not to be. We will discuss
other advantages and disadvantages of implementing a client-side solution to session
attacks as a proxy when we develop our own solution in the next chapter.

4.4.2 Noxes

Noxes, developed by by Kirda et al. in 2006, is a client-side solution to mitigate
cross-site scripting attacks [60], and should therefore technically be described in
the next section. However, since it is developed specifically to prevent information
leakage from one domain to another, we discuss it here.
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Noxes works in a similar way to a personal firewall like ZoneAlarm11 or Windows
Firewall12. However, instead of controlling the connections for all processes running
on a user’s machine, it only handles requests made by the user’s browser. This
allows Noxes to offer more fine-grained controls which are specifically tailored to web
applications. For example, whenever a JavaScript request is trying to send certain
information to a domain that is not known by Noxes, the user is presented with
a prompt that asks for user confirmation. The user is able to accept or deny the
request, and to create a firewall rule for similar future requests.

Such an approach is obviously very cumbersome: the user will have to explicitly
allow every request that is made to a new domain. Because of this, Noxes includes a
list of safe scenarios. When such a scenario occurs, the request is allowed without
consulting the user. The following scenarios are considered safe:

Requests to the same domain When the base domains for the request and the
page the request originated from are the same, information leakage to another
domain is not possible. Noxes checks whether a request originated from the
same domain by comparing the Referer HTTP header of the request to the
domain of the requested web page.

Static links When links do not contain dynamic components, an attacker is unable
to embed the victim’s SID as part of the URL. Indeed, an attacker can only
create the URL after he has read the domain’s cookie value, which then has to
be dynamically included in the URL.

Static links do not completely prevent a SID from leaking to another domain. Because
of this, Noxes includes two exceptions to the second ‘safe rule’. Firstly, consider the
scenario where an attacker includes in the web page a static link to his own domain
for each of the two possible bit values for every bit in the SID. He is then able to use
JavaScript to load the links that correspond to the individual bits in the SID, one by
one (see Figure 4.5). Because of this, Noxes allows maximally k static links to the
same external domain, where k is a customizable threshold.

A second exception to the second ‘safe rule’ is made for pop-up and pop-under
windows to a different domain. Using these, an attacker can open a window containing
a static link to a page on his own domain, while setting the window’s title to the
value of the victim’s cookie. This makes him able to read the cookie value from
within his own page, by using JavaScript on his own page to access the value of the
document.title attribute. Because of this, Noxes presents an alert message to the
user when it detects that a pop-up or pop-under window to a different domain is
opened, regardless of the link being static.

Unfortunately, Noxes’ complete policy still allows an attacker to leak the victim’s
SID to his own domain. Indeed, as Nikiforakis already noted [78], an attacker
can create an XSS attack which, instead of <script> tags, injects an HTML-tag

11ZoneAlarm is available from http://www.zonealarm.com/.
12Windows Firewall is included by default on every version of Microsoft Windows since Windows

XP Service Pack 2. More information is available on http://technet.microsoft.com/en-us/
network/bb545423.aspx.
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<html>
. . .
<img src=" http :// a t tacke r . com/bit0_0 . jpg ">
<img src=" http :// a t tacke r . com/bit0_1 . jpg ">
<img src=" http :// a t tacke r . com/bit1_0 . jpg ">
<img src=" http :// a t tacke r . com/bit1_1 . jpg ">
. . .
<script>

fo r [ i=0 to 100 ] {
i f ( c o o k i e b i t s [ i ] == 0)

<contact http :// a t tacke r . com/ bit i_0 . jpg>
e l s e i f ( c o o k i e b i t s [ i ] == 1)

<contact http :// a t tacke r . com/ bit i_1 . jpg>
}

</ script>
</html>

Figure 4.5: Pseudo code for a JavaScript-based attack that transmits the SID to an
attacker’s domain using only static links (based on [60])

that statically references a URL to the attackers domain including the SID value.
Furthermore, an attacker is still able to make the victim’s browser load multiple
pages of the originating domain, with every page sending maximally k characters (k
being the maximum of allowed outgoing links to an external domain) of the victim’s
SID to the attacker’s server.

Another problem with Noxes is that it uses the Referer header to check whether
a request comes from a different domain than the one of the requested web page. As
we saw in section 3.2.2, the Referer header is often stripped [10]. This will cause
Noxes to present an alert even for some requests that go to the same domain as the
one they originated from.

It can be concluded that Noxes is too complex to be considered a long-time
solution against session hijacking attacks. Firstly, user interaction is needed for many
requests, which is often cumbersome for the user. Moreover, less technically inclined
users will not be able to judge whether a request is safe or not. Secondly, as can be
seen from the ‘safe rule’ exceptions, lots of possible attack vectors will have to be
accounted for by the firewall. This will cause Noxes to be often lacking in security.

4.4.3 Dynamic tainting and static analysis

Similar to Noxes, the solution developed by Vogt et al. [112] that we describe here
is actually meant to mitigate data leakage in XSS attacks. It uses a combination
of dynamic data tainting and static analysis to prevent sensitive data (e.g. session
cookies) from leaking to a different domain than the one it originated from.

Tainting is a technique which makes sure that sensitive data keeps being regarded

47



4. Session attack countermeasures

as such, even when it is passed around. For this, sensitive data is given a ‘taint’, which
is propagated when (part of) the tainted data is assigned to a different variable, or
used as part in an arithmetic or logic operation. For example, consider the following
snippet of JavaScript code, wherein document.cookie is tainted:

var ar r = [ ] ; // a r r . l e n g t h = 0
i f ( document.cookie [ 0 ] == ’ a ’ )

a r r [ 0 ] = 1 ;
i f ( a r r . l e n g t h == 1)

y = ’ a ’ ;

Because document.cookie is tainted, arr will be tainted as soon as the first if-test
is executed. Upon executing the second if-test, y is also tainted, which correctly
indicates that information about the sensitive (cookie) data is present in this variable.

When it is detected that a web page tries to send tainted data to a third party,
the user is asked to allow or deny the actual transmission of this data, much in the
same way as was the case with Noxes. Sending of tainted data to a third party
can be achieved in many ways. Some examples of the methods the countermeasure
detects are changing the location of the current web page, changing the source of an
image, and automatically submitting a form [112].

Unfortunately, several hidden channels that can be used to transmit sensitive
information remain undetected by this solution [78]. Moreover, Russo et al. described
how the protection technique can be circumvented by both encoding secret informa-
tion into the structure of the DOM tree and exploiting tree navigation [91]. Another
disadvantage of this solution stems from the fact that it needs to ask for user confirma-
tion. This leads to the problems which were already discussed when describing Noxes.

4.4.4 Overview

In Table 4.2, an overview of the different server-side and client-side session attack
countermeasures is given. From this table, we can draw two conclusions: firstly,
while lots of work has been done to mitigate session hijacking attacks, the session
fixation attack is often overlooked. Secondly, none of the discussed countermeasures
handle session fixation attacks entirely at the client side. In fact, we do not know of
any countermeasure to session fixation that only requires modifications to be made
at the client side [15].

4.5 Script injection countermeasures

Over the years, different solutions to XSS have been proposed, both at the server
and at the client side. In this section, we describe the general principles behind these
approaches, without going into too much details.
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Needs Prevents Prevents
modification session hijacking session fixation

Deferred loading server via JavaScript no
SessionLock server via MitM & Referer no

One-time cookies server & client yesa yes
Johns et al. server no yes

SessionShield client via the browser no
Noxes client via JavaScript (incomplete) no

Dynamic tainting client via JavaScript (incomplete) no
aWhen using the same server for every request, session hijacking is prevented entirely. When

using different servers, an attacker is prevented from accessing a resource different from the one the
victim used the one-time cookie for.

Table 4.2: Comparison of different session attack countermeasures

4.5.1 Server-side countermeasures

At the server side, two general categories of XSS countermeasures exist. The first one
is that of input validation, or input filtering, as is available in solutions like Sanctum’s
AppShield [61]. In such an approach, all script code is stripped from user input
in order to prevent any user-submitted executable code to be sent to the browser.
Stripping of code is done either by removing certain substrings (e.g. <script> tags),
or by replacing characters with their HTML-safe counterparts (e.g. replacing < by
&lt; and > by &gt;), which will be converted back to the original character once
they are rendered by the browser.

A second category of server-side XSS countermeasures tries to detect user-injected
script code upon returning it to the victim. One solution that does this is XSS-
Guard, developed by Bisht et al. [13]. In this solution, two versions are generated for
every returned page: one without, and one containing user input. XSS-Guard then
compares both pages to see if there are any differences in JavaScript between the
two pages. If differences are found, the relevant parts are stripped from the response
before it is sent to the client. This prevents JavaScript in the user-input from being
returned to the client.

Another such solution, called SWAP, was presented by Wurzinger et al. in 2009
[119]. It works by assigning a so-called ‘script ID’ to every piece of JavaScript
generated by the server. When script code is found in a server response, SWAP
checks whether it has a valid script ID associated to it. If it does, the response is
forwarded to the client. If the piece of code does not correspond to a valid script ID,
the response is discarded, and the user is presented with a screen that notifies him
of the suspected XSS attack.

For both categories of server-side countermeasures, a mechanism that automati-
cally detects JavaScript is needed: the first category needs it to find JavaScript in user
input, whereas the second category needs it to detect JavaScript in a returned page.
A difficulty in detecting JavaScript is that it has to be able to recognize all different
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ways in which script code can be injected (see section 3.1.2 and [53]), including all
possible encodings and taking into account differences in various browsers (called
browser quirks). AppShield approaches this difficulty by using pattern matching on
known attack vectors [61], while both XSS-Guard and SWAP use Firefox’ HTML
parser to detect which parts of a web page contain script code that will be executed
by Firefox [13, 119]. Whereas the first approach will possibly overlook some attack
vectors, the second approach will cause every piece of HTML that can trigger code to
be executed in the Firefox web browser to be detected. A disadvantage of the second
approach, however, is that it does not take into account differences between various
browsers. This makes it possible that, even if Firefox does not consider a particular
piece of HTML code to be valid JavaScript, another browser might execute it as
script code. Hence, an attacker will still be able to bypass the proxy by injecting
JavaScript code which is specific to for example the Internet Explorer web browser.

A disadvantage shared by both approaches in the second category is that they
do not prevent binary Flash objects from being injected. Thus, an attacker will still
be able to use Flash to inject JavaScript on a page, regardless of the countermeasure
being in use [13, 80].

Another disadvantage, limited to SWAP, is that an attacker will still be able
to inject script code in order to execute a DoS attack. Indeed, because script code
is only detected after it has been injected at the server, an attacker is still able to
inject script code. Moreover, because server responses containing injected code are
discarded entirely by SWAP, all responses containing the attacker’s injected code
will be prevented from being sent to the client. As such, injecting script code now
allows an attacker to render a page unavailable to the users of a web application.

4.5.2 Client-side countermeasures

At the client side, four important countermeasures have been developed to mitigate
cross-site scripting. Two of them, Noxes and dynamic tainting, were already discussed
in the previous section. We discuss the remaining two countermeasures here.

The simplest countermeasure, called NoScript, allows the user to choose for each
piece of script code whether it should be allowed to be executed [70]. It also provides
specific protection to XSS attacks. Furthermore, NoScript allows other plugins and
embeddings (e.g. Java and Flash) to be blocked. By default, it uses a whitelist
approach, which implies that all scripts are blocked unless the user manually specifies
an exception for a particular piece of JavaScript. As was already described in the
context of Noxes, this is very cumbersome, especially for less technically inclined
users. Moreover, it has been shown that an XSS vulnerability on a NoScript domain
can be used to run JavaScript from any website, despite NoScript being enabled [82].

A second countermeasure, called HProxy and developed by Nikiforakis et al.
[79], was originally created to prevent SSL stripping attacks. In such an attack,
the attacker acts as an active MitM to force users to communicate over an insecure
channel with the web server. To detect such attacks, HProxy compares different
HTML and HTTP elements in the response from the server that could be misused
by a MitM attacker to what they looked like in previous page responses. What is
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relevant for our discussion is that one of these elements is JavaScript code, which is
checked as follows:

1. When the first response for a particular page is received, a second request is
made by HProxy. The first response is then compared to the second one in
order to identify the dynamic JavaScript parts of the web page, i.e. the parts
of the script code that differ on every page request.

2. For all subsequent responses, it is checked whether any non-dynamic JavaScript
on the page differs from the JavaScript returned in the first response. If it does,
the web page is marked as ‘unsafe’, and the response is dropped.

While HProxy is definitely a step in the right direction, enabling users to be secure
against XSS attacks without requiring support from either the web application or the
user itself, it does have some disadvantages. Firstly, current versions of web pages
are always compared to the first version that was received. This causes updated
versions of websites to be blocked. Moreover, it prevents the detection of attacks that
occur the first time a page is loaded when HProxy is in use. A second disadvantage
is that HProxy suffers from false positives: the paper mentions that, even with
advanced JavaScript change detection13 in place, 3% of legitimate server responses
are mistaken for malicious responses.

4.5.3 Hybrid approaches

Hybrid approaches mitigate XSS attacks by letting the server define a policy, while
making the client check whether a returned page adheres to this policy.

‘Signed scripts’, proposed by Mozilla [90], provide a way for web servers to
digitally sign the scripts they send to a client. The client is then able to verify that
the scripts which are present in a web page are actually issued by the web server,
and not modified in transit or injected by an attacker. Currently, signed scripts are
used by the Firefox web browser to allow a script to request extended privileges (e.g.
modifying the browser’s preferences). More interesting is that signed scripts are also
used by HProxy, described earlier, to reduce the number of false positives by always
allowing a correctly signed script to be executed.

Another hybrid approach is that of ‘Browser Enforced Embedded Policies’ (or
BEEP for short), developed by Jim et al. in 2007 [53]. Here, the server includes
an additional JavaScript function in the response, which will enable the browser
to check that the page containing this JavaScript does not include injected code.
Whenever a browser that enforces BEEP encounters a script while rendering a
page, it invokes this special function with an identifier of the JavaScript code as its
argument. If the function returns true then the script is deemed acceptable and will
be executed; otherwise it will be ignored. The browser describes two possible policies
that can be implemented in such a JavaScript function: whitelisting, in which the

13The advanced JavaScript change detection consists of the practices described in this section,
together with the whitelisting of signed scripts, as it is described in the next section. Without the
whitelisting in place, false positives occurred for about 8% of legitimate responses
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function returns true if the SHA1 hash of its argument corresponds with one of the
‘safe hashes’ included in a whitelist, and DOM sandboxing, in which parts of the
web page that include user content are marked by setting their class attribute to
noexecute. In this second policy, the function checks that its argument is not part of
such a sandbox, and returns false if it is, preventing execution of the JavaScript code.

We conclude from this section that XSS protection is very hard to get right.
Oftentimes, all different attack vectors are handled separately, which causes some
of them to be unavoidably forgotten. Secondly, many XSS countermeasures require
server-side cooperation, which renders them unusable for the majority of the web
from the user’s perspective. The approaches that are made work exclusively at the
client side, on the other hand, either require extensive technical knowledge (NoScript),
or suffer some amount of false positives (HProxy).

4.6 Conclusion
In this chapter, we discussed some methods a web developer can employ to se-
cure against the session attacks described in the previous chapter. Many different
approaches are possible, and unfortunately, many of these approaches suffer short-
comings.

For web developers building a new web application, generally the best option
is to use a web application framework that has session protection already built in.
When this is not possible (e.g. because the web developer needs to use a particular
framework), several other fairly good approaches to session protection, discussed in
this chapter, are available. Even for web applications that were already deployed, it
is often still possible to modify the web application in such a way that session attacks
are mitigated. Alternatively, a server side proxy can be put in place to handle session
security.

Web application users also have some options to protect themselves. However,
as we have seen, these options are often lacking, or they require the user to be
technically inclined. One notable exception is SessionShield, which provides sound
protection against session hijacking via XSS attacks. Unfortunately, SessionShield
does not protect the user against session fixation attacks. Because of this, we propose
a client-side solution to session fixation in the next chapter.
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Chapter 5

A client-side solution to session
fixation and session hijacking

In this chapter, we propose a client-side solution to the session fixation and session
hijacking attacks described in section 3.3. The proposed solution was also submitted
as a paper, co-authored by Philippe De Ryck, Nick Nikiforakis, Lieven Desmet and
Frank Piessens, to the W2SP 2011 conference [15]. This chapter includes some of
their wordings and data, which are indicated by citing the submitted paper. The
original version of the paper is attached to this thesis as Appendix B. A scientific
poster describing the solution is attached as Appendix C.

The reason for developing a solution at the client side is that the user incentive
for using a secure web application is often larger than the web developer incentive
for creating one [55]. To our knowledge, there exists no other practical client-side
solution to the session fixation attack [15].

Out of the methods for injecting a session ID described in section 3.3.2, we
consider XSS and <meta>-tag injection the most important. These injection attacks
have a high severity rating [118] and lots of websites are vulnerable [17]. Similarly,
out of the methods for capturing a session ID (see section 3.2.2), we consider XSS
attacks to be in scope. Ideally, these problems would be solved by finding a complete
solution to XSS attacks. Unfortunately, as we saw in section 4.5, solutions to XSS
are often lacking, and few have been developed that work exclusively at the client
side. Other attack vectors, such as URL rewriting, subdomain cookie setting, MitM
attacks and response splitting are considered out of scope because either a client-side
solution would be unable to distinguish between legitimate SIDs and forged SIDs, or
because they exploit a bug at the browser or proxy level.

We first develop a client-side policy that counters session fixation attacks. Af-
terwards, we implement this policy as a Firefox add-on, and we provide a thorough
evaluation. Lastly, we describe how the add-on was extended to provide a solution
to the session hijacking attack.
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5.1 Principle

The reasoning behind the developed client-side solution is that session IDs will never
be set over an untrusted channel, only to be requested over a trusted channel later
on. We consider HTTP to be trusted, since this channel is controlled entirely by the
web server. As an untrusted channel we consider elements in the web page itself,
such as JavaScript and <meta> tags, because they often contain user input. Thus,
the assumption made is that most websites will set their session identifiers via HTTP,
and that websites that do not will never request the SID via this channel. As we will
see in section 5.4, this assumption is valid for all practical use.

The solution has the form of a proxy that is located at the client-side. As a
basic policy, we choose to only allow cookies in outgoing HTTP requests if they were
previously set via an HTTP response from the server. This policy is depicted in
Figure 5.1. When a new cookie is sent to the client via HTTP, the proxy remembers
this cookie. When an outgoing request is sent to the server, the proxy checks all
outgoing cookies. If one of these was not set via HTTP, it is removed from the
request. This prevents all cookies set via JavaScript or <meta> tags from being used
over HTTP.

(a) An incoming response containing a new SID.

(b) An outgoing request containing a cookie set via HTTP, and one set
via JavaScript. The JavaScript cookie is stripped from the request by
the proxy.

Figure 5.1: Client-side solution to session fixation

We want to apply this basic policy only to session cookies, instead of all cookies.
To see why, consider for example the scenario where a user can set the theme of the
current web page by clicking a button1. Because this theme can immediately be
applied (by changing the page’s css style on the fly), there is no need to send an extra
HTTP request to refresh the page. To make this style change persistent, a cookie
has to be set in the user’s browser. To avoid the need for another HTTP request

1The website http://www.last.fm, for example, allows a logged in user to set his theme by
clicking the ‘paint it black’ link at the top of the site.
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and response, this cookie is set using JavaScript. Subsequent requests will however
send this cookie over HTTP, to make sure that the returned page is using the correct
style. If no distinction is made between session cookies and other cookies, sending
this cookie over HTTP would not be allowed by our policy. Correctly identifying
which cookies are session cookies is the subject of the next section.

Similarly, the policy is only applied to session cookies set via an untrusted channel,
that are sent over a trusted channel afterwards. Although we assume that session
cookies which are requested over a trusted channel will never be set over an untrusted
channel, session cookies can still be set over an untrusted channel and be requested
over the same channel afterwards. We allow this type of behavior because we don’t
want to break web applications which set session cookies via JavaScript, only to
subsequently request them via JavaScript.

In normal use cases, setting session cookies via JavaScript will not be very
common. Indeed, when a user logs in, he will most likely be redirected to either a
personalized homepage, or to a personalized version of the web page he was reading
before he logged in. Because the HTTP response needed to serve the personalized
page is able to set new cookies, session cookies are almost always set over HTTP.

The proposed policy effectively mitigates the attack vectors we considered to be
in scope. Cookies set from JavaScript are marked as untrusted, which mitigates the
cross-site scripting attack vector, both within one domain as for sites sharing cookies
across subdomains. A second attack vector is the injection of cookies through the
<meta>-tag. Since these cookies do not come from a Set-Cookie header, they too
are considered untrusted. As with the cross-site scripting attack vector, both attacks
within one domain and across subdomains are mitigated. In section 5.4, we show
that dismissing untrusted session cookies has no impact on the user experience. The
complete policy is summarized in table 5.1.

Regular Cookie Session Cookie
Trusted Channel Allowed Allowed

Untrusted Channel Allowed Not Allowed

Table 5.1: The client-side policy for preventing session fixation

5.2 Identifying session identifiers

Because there is no standardized way of doing session management (see section 2.1),
we have to look for patterns which are common among session identifiers. Based on
the properties of secure web sessions listed in section 2.3, and on the SID detection
algorithm defined by Nikiforakis et al. [78] (see section 4.4.1), we identify a cookie
to be a session cookie if it has one of the following properties:

• The name of the cookie is in a list of known session identifiers, such as
phpsessid, aspsessionid and jspsession. Most frameworks implement-
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ing a session mechanism have default names for their session IDs, which are
included in this list.

• The name of the cookie contains the substring ‘sess’ and the value of the cookie
is a sufficiently long2 string containing both numbers and characters.

• The cookie value passes a randomness test. For this, the relative entropy of
the cookie value is computed based on the Shannon Entropy measure [59].
Afterwards, it is calculated how many bits would be needed to encode the
string [78].

5.3 Implementation

The solution was first prototyped as a lightweight HTTP proxy written in Python, and
later implemented as an add-on for Mozilla Firefox3. We first discuss the advantages
and disadvantages of an implementation as a browser extension. Afterwards, we
discuss the relevant parts of the Firefox architecture. We conclude with the specifics
about the implementation itself.

5.3.1 HTTP proxy or browser extension?

Implementing the policy as a browser extension has numerous advantages over an
implementation as an HTTP proxy. The most important advantage is visible when
an encrypted (HTTPS, see section 4.1.3) connection is used. In this case, a browser
extension is already behind the regular SSL endpoint. An HTTP proxy, on the other
hand, should provide its own SSL endpoint if it wants to intercept secured traffic.
This means that it should handle encryption, handshakes and certificates – which
are all very difficult to get right – separately from the browser. The other option is
to not let the proxy intercept HTTPS traffic, rendering it incapable to protect this
kind of traffic against session fixation. This would be a major security compromise,
since SSL traffic is deemed to be more secure than normal (unencrypted) traffic.

A second advantage lies in the fact that an extension can differentiate between
the normal and private browsing modes in the browser. Thus, it can make sure
normal surfing cookies are never mixed with private surfing cookies. A proxy would
allow cookies that were set during a private browsing session to pass through in
a normal browsing session. Moreover, since a proxy has no way of distinguishing
between the various applications using it, different browsers would be allowed to use
each other’s cookies.

An additional advantage is that a browser already has an up-to-date list of top
level domain names. This is convenient when checking whether a website is trying to
set a cookie for a valid parent domain (and not a top-level domain).

2Based on [78], we consider 10 characters to be sufficiently long.
3This add-on is available for download at https://spideroak.com/share/IJZGC3I/pub/home/

bram/Openbaar/NoFix.xpi. It can also be tested by booting the live CD included with this thesis,
for which the instructions are available in Appendix A
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Lastly, installing a browser extension – and especially a Firefox add-on – is
trivial, while installing a proxy requires changing the connection settings in all
applications that should use the proxy. Thus, an implementation in the form of a
browser extension allows us to reach a much broader – and less technically inclined –
audience [15].

There are also some disadvantages a browser extension has compared to a proxy.
The most obvious one is that a specific extension implementation will only be usable
by at most a few browsers. A proxy, on the other hand, can protect all HTTP
traffic that passes through, protecting even applications that are not web browsers.
Moreover, some browsers do not provide support for extensions at all, causing a
proxy to be the only viable solution for these applications.

A second disadvantage is that, on some browsers, extensions are able to interfere
with one another. In Firefox, for example, all extensions share the same namespace.
This allows rogue browser extensions to thwart security extensions [9, 103].

5.3.2 The Firefox architecture

Mozilla Firefox allows to extend the browser using a combination of JavaScript and
XML. These can access the browser’s XPCOM components, which offer access to
various browser features.

In order to implement our client-side protection technique, the following capabili-
ties are needed:

• Inspect incoming HTTP(S) responses, to be able to track the trusted session
identifiers that are being set.

• Inspect and modify outgoing HTTP(S) requests, to be able to strip out un-
trusted session identifiers.

• Persistently store information, to be able to keep information on persistent
session identifiers.

These capabilities are provided by the following Firefox components:

• The http-on-examine-response observer allows us to intercept HTTP re-
sponses before they are processed. Whenever a response is received, this
object’s observe() method is executed [75].

• The http-on-modify-request observer allows us to intercept and modify
HTTP requests before they are sent. Whenever a request is received, this
object’s observe() method is executed [75].

• The storageService allows us to persistently store data in a SQLite database
[76]. This service is also used by Firefox internally to store data on the local
machine [15, 76].

Additionally, Firefox provides an interface that examines a hostname and de-
termines the longest portion that should be treated as though it were a top-level
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domain (TLD) [74]. This is convenient when checking whether a cookie is being set
for an allowed domain.

It must be noted that the previously listed ‘required capabilities’ are currently
only partially available in all other browsers. Google Chrome, for example, had
no support for intercepting HTTP requests and responses at the time of writing,
although this feature is currently on the wishlist [20]. To be able to port the add-on
to other browsers, these browsers should implement similar interfaces.

5.3.3 Implementation as a Firefox add-on

The proposed policy was implemented as a Firefox add-on, available for Firefox 3.5
or higher. We describe the internals of the add-on in this section.

To detect when a trusted session ID is set, the add-on searches for a Set-Cookie
header in all incoming HTTP responses. If a cookie contains the domain attribute,
the value of this attribute is checked for validity in order to prevent cross-site cooking
attacks [120] against the add-on. For this, the add-on assures that domain parameters
in cookies are always parent domains or subdomains of the website the cookie was
received from. Also, Firefox’ top-level domain list [74] is used to make sure no website
can set a cookie for a top-level domain (such as .co.uk).

When all requirements are satisfied, the cookie is stored in a separate cookie jar
implemented as a SQLite database. Storage is handled using asynchronous writes, to
reduce the delays introduced by the add-on (we will discuss the add-on’s performance
in section 5.4.3). To make sure that session IDs are also available for checking
requests before their write operation is complete, cookies are temporarily stored in
main memory until they have been written to the database.

To filter out untrusted session IDs from requests, every outgoing HTTP request
is intercepted by the add-on. Before a request is sent to the server, its Cookie header
is inspected. For each cookie, the add-on checks whether the cookie represents a
session identifier using the algorithm described in section 5.2. If it does, the add-on’s
separate cookie jar is queried to make sure that the cookie is trusted. If this is not
the case, this particular cookie is stripped from the request. After having repeated
this process for all cookies, the request is released back to the browser with the
modified Cookie header in place.

5.4 Evaluation

The add-on is evaluated in three parts. The first part evaluates the add-on’s functional
correctness. The second part evaluates its impact in real-world browsing scenarios.
Lastly, the third part evaluates the add-on’s performance, and thus – together with
the second part – its impact on the user experience.

5.4.1 Scenario testing

To make sure that the implementation behaves in accordance with the specification,
a simple HTTP server is created. This server simulates different scenarios by issuing
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cookies both in the way a session fixation attack would, and in the way a legitimate
website would. It is then checked that only the trusted session identifiers are returned
to the server on subsequent requests, while untrusted session identifiers are stripped.
Our implementation passes all these correctness tests.

5.4.2 Real-world impact

An evaluation of the add-on’s impact on the user experience is difficult to automate.
Because of this, we asked several test persons to use the add-on during their daily
web browsing activities. Apart from collecting logging data from the test persons,
we asked them to pay close attention to see if any websites would break or behave
differently. The experiment ran for 20 weeks.

From the log files, we find that in a considerable fraction (19.53%) of the requests,
session cookies were stripped. We would assume that, with such statistics, the
extension leads to a severely degraded user experience. Surprisingly, the only problems
that were mentioned by the testers had other causes, such as malfunctioning websites
or other poorly written add-ons. Not a single problem mentioned in these 20 weeks
was due to the policy applied by our add-on. We will discuss the causes for this
behavior in section 5.5.

Because of the very little real-world impact of this solution, it would even make
sense for Firefox to implement the described policy by default. In the past, the
Firefox team has already taken bold steps to increase security, even though some
websites might have been broken afterwards [98, 73, 15].

5.4.3 Performance

The user experience can also be negatively impacted by a large overhead induced by
client-side protection mechanisms [15]. We quantify this performance overhead by
performing two experiments.

The first experiment consists of timing the delays that are introduced by the
add-on during an everyday web browsing session. For this, timers are added to the
add-on code. We measure that the average delays for requests (where it is checked
whether a cookie is allowed) and responses (where cookies are set) are 1.25 ms and
0.25 ms, respectively.

The second experiment4 that is performed compares the page load times in Firefox
with and without the add-on enabled for the top 1000 most visited pages on the
Internet, according to Alexa [3]. For this experiment, we use a setup similar to
the one used to evaluate SessionShield [78], where the network inconsistencies are
eliminated by hosting all pages to be requested locally. A fake local DNS server and
fake local web server are used to serve the captured pages. For additional resources
(e.g. images, scripts), the local web server responds with a 404 ‘page not found’
status code. The actual experiment consists of using the ChickenFoot add-on [14]
to automate the process of starting a timer, instructing Firefox to load a page, and

4This experiment was performed by Nick Nikiforakis, co-author of the submission to W2SP 2011
[15].
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stopping the timer. This scenario is repeated three times for every web page, both
with and without the add-on enabled. The average page-load time without session
fixation protection is 195.407 ms. When our add-on is enabled, the average page-load
time is 198.242 ms [15]. Thus, the average overhead introduced by our add-on is
approximately 3 milliseconds, which is negligible compared to the more than 0.5
seconds average loading time for pages on the Internet [77].

5.5 Discussion

Our client-side countermeasure against session fixation is very effective with no
impact on the user experience and a minimal impact on the site’s behavior in the
form of false positives (i.e. regular cookies which are incorrectly marked as session
cookies) [15]. In this section, we describe why the add-on blocks so many cookies,
and why this does not affect the web application’s behavior or the user experience.

One reason is that a web application might not need cookies that are set via
JavaScript to be available in HTTP requests. Indeed, when a cookie is set via
JavaScript, chances are quite high that this cookie will afterwards only be accessed
via JavaScript. However, a JavaScript cookie will also always be sent over HTTP by
the browser, causing it to be stripped by the add-on. This does not impede the web
application’s behavior because the web server would not read the cookie via HTTP
anyway. When the web server tries to access the cookie via JavaScript, however, it
is allowed to do so by our policy. Thus, a web application only accessing untrusted
cookies via JavaScript will keep working as expected.

Another reason for the stripped cookies is that the add-on also exhibits some
false positives [15]. False positives are cookies that should be allowed to be sent over
HTTP, but which were erroneously stripped from the request by the add-on. The
cookies that we discovered to be treated as session cookies, even though they were
not, are all related to web analytics services. Web analytics services provide a way
for web developers to gather statistics about their website. Two examples of such
services are Google Analytics5 and Yahoo! Web Analytics6. To be able to track a
visitor’s behavior on a website, these services set cookies to measure the time spent
on the website, and to uniquely identify a visitor [102, 46]. This last category of
cookies often has a value that resembles a session ID. Because the web analytics code
is embedded as JavaScript code within the developer’s web page, a web analytics
cookie is set via JavaScript. Hence, these user identification cookies will be marked
as ‘untrusted’ by the add-on, and will as such be stripped from all HTTP requests.
Stripping these cookies only affects the web developer, who loses some statistical
information about visitors using our add-on. It does not affect the user experience,
which is why none of the add-on testers noticed any problems.

5An overview of the features available in Google Analytics can be found on http://www.google.
com/analytics/features.html.

6An overview of the features available in Yahoo! Web Analytics can be found on http://web.
analytics.yahoo.com/features.
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5.6. Extending the solution with session hijacking protection

If we want our policy to be widely adopted, we should make sure that the
previously mentioned false positives are accounted for, even if they don’t impede the
user experience. Because of this, we also provide a whitelist of cookies that should
not be stripped in the add-on.

An approach using heuristics will also always exhibit some false negatives. How-
ever, when an SID is incorrectly marked as a regular cookie in our session ID detection
mechanism, this means that it does not satisfy the safety requirements for SIDs
presented in section 2.3.1 [78]. Because of this, the SID would already be susceptible
to being guessed by an attacker, which will still be a problem even if the user would
be secure against session fixation attacks on a website that uses such SIDs. When the
web developer fixes the problem of insecure session IDs, the session fixation problem
will automatically be solved by our solution.

5.6 Extending the solution with session hijacking
protection

As we already mentioned in the introduction, the add-on was extended with a
solution to the session hijacking attack. To do this, we made an even stronger
distinction between HTTP cookies and JavaScript cookies: in our extended policy,
session cookies that are set via HTTP are not allowed to be accessed by JavaScript.
This prevents session cookies from being stolen via XSS attacks. This policy closely
resembles that of SessionShield [78], the client-side solution to session hijacking
attacks which was described earlier. A comparison of both solutions is given in
section 5.7.4.

The policy extension is implemented in our add-on by adding the HttpOnly flag
to every incoming HTTP cookie which is marked as a session cookie. When this flag
is enabled, the browser will only allow the cookie to be read via HTTP (see section
4.1.2 for more information). Thus, we let the browser handle the blocking of HTTP
session cookies over JavaScript. Figure 5.2 shows the adapted version of Figure 5.1a,
with the solution extended to provide session hijacking protection.

Figure 5.2: The extended client-side solution, providing both session fixation and
session hijacking protection
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5.7 Comparison to other session attack
countermeasures

In this section, we compare our solution to some of the countermeasures discussed in
the previous chapter.

5.7.1 Renewing the session identifier

Renewing the session identifier was mooted to be the ideal solution against session
fixation attacks in the previous section. Unfortunately, this solution can only be
implemented at the server side. Because of this, Johns et al. suggest that their
proxy protecting against session fixation could also be implemented at the client
side, renewing the PSID instead of the SID to protect the user [55]. It would
then be expected that the proxy makes sure that an attacker can not take over a
victim’s session by executing a session fixation attack, since he does not know the
victim’s PSID. Unfortunately, this is not the case. To see why, consider the scenario
depicted in Figure 5.3. In this scenario, the attacker uses HTTP response splitting
(as described in section 3.3.2) to inject a cookie. Because the proxy sees the SID
as a normal HTTP session cookie, he will attach a valid PSID to the cookie before
sending it along to the victim. When the victim logs in, he attaches both the SID
and the PSID, of which the proxy will only forward the first one to the web server.
The victim is now logged in with the fixated SID, as before. Since the attacker’s
requests do not have to pass through the proxy, he can use the fixated SID to act as
the victim on the server.

Figure 5.3: Attack on a client-side implementation of the proxy proposed by Johns
et al.

Note that in the previous discussion, we only talked about injecting a SID via
HTTP response splitting. The reason for this is that the proxy has been developed
specifically for HTTP cookies, which will prevent it from detecting cookies being set
via other channels such as JavaScript or <meta> tags. In fact, this causes a client-side
implementation of the proxy to effectively act like our own solution: session cookies
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which have been set over a channel different from HTTP will not have a valid PSID
attached to them, and will as such be stripped from the requests by the proxy.

It is not possible for a client-side proxy to be configured for every possible web
application. Because of this, the paper argued that such a solution should be able to
automatically identify session cookies. Our solution uses a SID detection algorithm
exactly for this purpose.

5.7.2 HttpOnly

Apart from being used as the mechanism to make our solution able to prohibit
JavaScript access to HTTP session cookies, HttpOnly greatly influenced the devel-
opment of our session fixation solution. Indeed, our solution can be seen as the
dual of HttpOnly cookies: where the HttpOnly flag makes sure that HTTP cookies
are unavailable to untrusted channels, our solution makes these untrusted channels
unable to set cookies which will be sent over HTTP.

A difference between HttpOnly and our solution is that the HttpOnly flag must
be explicitly set at the server side, whereas our solution reasons autonomously about
which cookies should be made unavailable. Moreover, our policy extension could be
seen as a proxy that automatically enforces HttpOnly behavior for cookies that need
it.

5.7.3 Deferred loading and one-time cookies

In the deferred loading approach, proposed by Johns et al. [54], it is reasoned that
cookies should be kept separate from the page content, to prevent an attacker from
stealing a cookie by altering the page. Similarly, one-time cookies [23] are never
made available to JavaScript. Our approach is similar in that it keeps session cookies
unavailable to JavaScript. A difference is that our approach identifies session cookies
after they have been issued by the web server, and thus does not require cooperation
of the server.

5.7.4 SessionShield

The policy extension, wherein the default policy was augmented with session hijacking
protection, is closely related to the session hijacking solution proposed by Nikiforakis
et al. [78]. In this solution, HTTP session cookies are kept in a separate cookie store,
outside of the browser. The difference lies in the fact that our add-on does allow the
browser access to the cookies: it only prevents non-HTTP channels from accessing
session cookies. As was discussed in section 5.3.1, an implementation in the form of
a browser extension makes sure that different browsers will not be able to use each
other’s cookies. This solves the problem that the SessionShield proxy has when it is
used by different browsers.

Similarly to our solution, SessionShield does allow untrusted cookies to be accessed
via untrusted channels afterwards. This is because, like our solution, SessionShield
only intercepts HTTP traffic, and does not notice JavaScript and <meta> cookies
being set. This allows JavaScript cookies to keep functioning correctly.
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As we already noted in the previous chapter, SessionShield does not protect against
session fixation. However, it would be relatively easy to extend SessionShield with
our policy preventing session fixation. This can be achieved by making SessionShield
block session cookies that it receives from the browser. Indeed, since SessionShield
only intercepts HTTP traffic, it keeps in its cookie store only cookies that are set via
HTTP. Thus, when a cookie that SessionShield does not know of is received from
the browser, it can conclude that this cookie was set over an untrusted channel. All
SessionShield has to do then is use its SID detection algorithm (which it shares with
our solution) to check whether the cookie is a session cookie. If it is, SessionShield
can block the cookie, thus mitigating session fixation attacks.

5.7.5 Noxes and dynamic tainting

The goal of both the Noxes and dynamic tainting solutions is very similar to that of
our own solution: to prevent session identifiers from leaking via XSS attacks [60, 112].
Their approach, however, is rather different. Both Noxes and dynamic tainting try
to prevent the stealing of cookies by mitigating all attack vectors one by one. Our
extended solution takes this one step further by making session cookies completely
unavailable to channels other than HTTP. This makes sure that hidden vectors,
which were a problem with both Noxes and dynamic tainting, are accounted for.

5.8 Future work
While cross-domain cooking [120] can also be used to perform a successful session
fixation attack, it was largely ignored in our solution. Since our Firefox add-on uses
Firefox’ top-level domain list to determine whether a cookie is set for a top-level
domain, part of this problem is already solved. However, a complete client-side
solution to cross-domain cooking would have to consist of completely prohibiting
subdomains from setting cookies for their parent domain. Our logs show that, when
loading each of the homepages of Alexa’s top 100 websites only once, 427 cookies are
set for a parent domain. Because of this, it is currently not clear how such a solution
can be implemented without breaking lots of websites.

Other session fixation attacks make use of URL parameters and form fields to set
the session cookie. These were also not considered in the current implementation. A
simple countermeasure could consist of stripping all SIDs from URLs and POST data.
Unfortunately, this would break all websites that perform their session management
exclusively via URL rewriting. Nevertheless, it might be useful to test the real-world
impact of such a solution, since statistics gathered from the K.U.Leuven dataset
(containing 4.7 million requests to 11848 domains) indicate that only 0.3% of the
URLs contain session information created by a known web framework [24, 15].

The current solution was only prototyped as an HTTP proxy and implemented as
a Firefox extension. Similar extensions could be written for other browsers. Moreover,
as was already described in section 5.7.4, SessionShield could easily be extended
with our solution. This would yield a proxy with a policy similar to our own, that
separates session cookies entirely from the browser.
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5.9 Conclusion
In this chapter, we developed a client-side countermeasure to both session fixation
and session hijacking attacks. We reasoned that users are likely to be more willing to
protect themselves against session attacks than web developers are to protect their
web application, hence the need for a solution at the client side.

The principle of the solution is that a clear separation should be made between
HTTP cookies and cookies set via other channels. In this sense, our approach is
very similar to that of SessionShield and HttpOnly cookies. However, our approach
extends this behavior to make it robust against session fixation attacks.

The solution was implemented as an add-on for the Firefox web browser, which
allowed it to be used by testers for a period of 20 weeks. We tested the impact of
enforcing a policy that prevents untrusted cookies from being sent over HTTP (the
part of the add-on which protects against session fixation), and found that – even
though a considerable amount of cookies is blocked – enforcing such a policy has no
negative effect on the user experience. Moreover, the implementation of this policy
has no noticeable impact on web browsing performance.
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Chapter 6

Conclusion

In this thesis, we looked at the security of session management in web applications.
We started off by showing the different methods of session handling that exist

on the web today. We discussed how session identifiers can be accessed, and which
properties a secure session identifier should possess.

Since session management is essentially an ad hoc approach, not developed with
security in mind, it is prone to exploitation by an attacker. Indeed, we saw that
‘Broken Authentication and Session Management’ is very high on OWASP’s list of
web application vulnerabilities. In the third chapter, we described attacks that make
an attacker able to act on a web server as if he was another user. We showed that
these attacks are very applicable in the present dynamic web, which makes great use
of user management and user generated content. While the attacks themselves are
not very complicated, many attack vectors are available. This allows an attacker to
create complex attack scenarios which are difficult to prevent.

A literature study showed that many countermeasures to session attacks have
been proposed over the years. Solutions exist both at the client and at the server side:
some offer protection against specific attacks, while others try to improve session
security in general. Thoroughly examining these solutions showed that, while most of
them suffer shortcomings, some good countermeasures to session attacks are available:
especially popular web frameworks provide reasonably good protection. A solution
offering client-side protection against session fixation attacks is, however, inexistent.
As a consequence, users have to rely on the developers of all web applications they
are using to implement this protection at the server side. To solve this problem, we
developed our own client-side solution to session fixation attacks.

Our proposed client-side solution provides protection against both session fixation
and session hijacking attacks, where an attacker uses untrusted channels to access or
modify the session cookie. We implemented this solution as an add-on for the Firefox
web browser. An extensive evaluation of the add-on showed that, while our solution
has no negative impact on the user experience, it does prevent session fixation and
session hijacking via one of these untrusted channels. This allows a user to protect
himself against session hijacking and session fixation attacks without requiring the
web developer to secure his web application.
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Appendix A

NoFix live CD instructions

Included with this thesis is a live CD which can be used to test the implementation
of the session fixation and session hijacking solution proposed in chapter 5. This
appendix describes how to use the live CD.

A.1 Booting the live CD

The live CD environment can be started by inserting the CD before booting your
computer. If your computer is configured to boot from CD, the live CD will boot
automatically. Depending on the computer model, you may have to press a button
during boot to access the boot menu.

Alternatively, the live CD can also be used from within a VirtualBox1 environment.
The installed VirtualBox additions should provide a seamless experience.

When the CD has booted, a user list is presented. Clicking the ‘nofix’ user will
start the NoFix environment.

A.2 Connecting to the Internet

To connect to the Internet, click on the ‘network’ icon in the upper right hand corner
of the screen and select the network to connect to. If the network requires a password,
you will be asked for the password to the keyring, which is ‘nofix’. When entering
the password, do mind that the default keyboard layout is QWERTY with NumLock
turned on.

A.3 Testing NoFix

To see how NoFix works, double-click on the ‘Firefox without NoFix’ icon on the
desktop. If you are using the live CD without an Internet connection, uncheck

1VirtualBox is virtualization software which is available for all common operating systems. It
can be obtained from http://www.virtualbox.org/wiki/Downloads
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the ‘work offline’ option in Firefox’ ‘File’ menu to be able to connect to the locally
running web server.

Firefox will load a web page from a local web server which issues different kinds
of cookies. Reload the page to make sure that the cookies are sent back to the web
server at least once.

The web server will now display a page listing the cookies it received, divided into
categories. These categories indicate whether the cookie would be allowed according
to our policy or not. Note that some cookies are available to JavaScript, even when
they should not be, and that some are available to HTTP, even when they should
only be available to JavaScript.

Now double-click on the ’Firefox with NoFix’ icon on the desktop. This will load
the same page, but this time with NoFix enabled. Be sure to reload the page this
time, too.

Upon reloading, it is clear that all cookies are divided into the category they
belong to, because NoFix filtered the session cookies from being sent over a different
channel than the one that set them. The cookie named ‘phpsessid’ will not be blocked
unless session hijacking protection is enabled. For information on how to do this, see
section A.6.

A.4 Testing a real-world attack

To test the impact of a real-world XSS attack, click on the ‘vulnerable page’ bookmark
in the Firefox bookmark bar. This page allows to input text that will be reflected to
the browser. When JavaScript is inserted in this way, it is possible to set a cookie.
The textbox is pre-filled with JavaScript code that executes an XSS attack. In this
attack, a cookie with name PHPSESSID and value i_chose_this is fixated. Click
‘Reflect my input, please!’ to send this text to the server. The server will then reflect
the input (and thus, the script code) back to the browser.

At the bottom of the page, it is displayed which cookies were sent to the server
in the previous HTTP request. Reload the page to make sure that any newly set
cookies are sent to the web server. When running Firefox without NoFix, the cookie
set via JavaScript appears at the bottom of the page.

When running Firefox with NoFix, JavaScript is prevented from setting cookies
that will be sent over HTTP, and the session fixation attack is mitigated. You can
test this by loading the same page in ‘Firefox with NoFix’, and reloading the page.
As can be seen, the session identifier is never sent to the server.

A.5 Testing other pages

Both versions of the Firefox web browser can also be used to surf the web. To see
which cookies are blocked by NoFix, the JavaScript console (which can be summoned
using Ctrl+Shift+J) can be used. This window will show log messages generated by
NoFix.
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Wireshark is also available to enable capturing of complete HTTP packets. To
start Wireshark, double-click on the Wireshark icon, and enter the password ‘nofix’.
Select capture->interfaces to choose the interface that connects you to the Internet.
Wireshark will then start capturing all packets that are sent and received on this
interface. To filter out HTTP traffic, type ‘http’ into the text box at the top of the
window, and press ENTER. Wireshark can now be used to inspect the complete HTTP
packets, and their cookies.

If you want to clear all cookies from Firefox’ cookie store, click on ‘Tools→Clear
recent history within the browser’.

A.6 Adjusting NoFix’ settings
The settings for the add-on can be modified through the ‘Tools→Add-ons’ menu in
Firefox. In the settings, it is possible to make NoFix apply its policy to all cookies
(instead of only session cookies), or to also enable session hijacking protection.
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A Client-side Solution to Session Fixation
Bram Bonné

Abstract—Session fixation is an attack by which an attacker
can take over the web session of a legitimate user. Although
server-side countermeasures are available, they do not seem to be
widely implemented across the web. In this paper we implement
a client-side solution for the most common variants of this attack.
This solution is based on the principle of making a distinction
between cookies set via JavaScript and cookies set via HTTP.
Evaluation of this solution suggests that most websites keep
working as expected, while the user is protected against the most
common forms of a session fixation attack.

Index Terms—Security, authentication, Internet security poli-
cies

I. INTRODUCTION

OVER the last few years, the web has shifted from
being a collection of pages containing static information

to a dynamic and fully interactive platform. However, with
interactiveness came great complexity. This complexity in turn
gave rise to a lot of security vulnerabilities.

One of these vulnerabilities is session fixation. Session fixa-
tion is an attack wherein the session management mechanism,
which is used by a website to differentiate between users,
is exploited by an attacker. He does this by fixating another
person’s session identifier, which allows him to eventually act
on the server as if he was the other person. This contrasts to the
session hijacking attack, where the attacker tries to capture the
victim’s session identifier after it has been set [1]. The session
fixation attack has been known for several years already [2].

It is relatively easy to secure against session fixation at the
server side, and solutions have been known for some time [3]
[4]. Unfortunately, server-side countermeasures are not very
widely implemented [5].

Therefore, we implement a client-side solution to some
variants of session fixation in this paper. The reason that this
solution was developed at the client-side is simple: the user
of a website often has a greater interest in securely using the
web application than the provider has in securing the web
application. A user wants to be protected regardless of whether
the application provider has implemented this protection. With
a client-side solution, it is possible for the user to be protected
on every website he visits.

We first explain what a session fixation attack is, and how
it can be executed (section II). Next, we describe the approach
taken in the development of the client-side solution (section
III). We then go on to describe the implementation of this
solution both as a HTTP proxy and as an extension for Mozilla
Firefox (section IV). These implementations are evaluated
in section V. Related work is described in section VI. We
conclude this paper with a look at future work (section VII)
and a conclusion (section VIII).

Fig. 1. Top: creation of a new session in the first response from the server
to the client. Bottom: attaching of the SID to subsequent requests from the
client to the server.

II. SESSION FIXATION

In this section, we describe what elements comprise a
session fixation attack. For this, we first have to explain how
session management works in a web context. Afterwards, we
explain how the session fixation attack works. Lastly, we go
into some technical details that explain how this attack can be
executed in practice.

A. Session management in web applications

In a web application, it is often needed to keep some kind
of state between the server and the client. HTTP, the protocol
on which the web is built, is stateless. Session management is
a technique used by the web developer to make the stateless
HTTP protocol support session state [6].

Web sessions work as follows. When the client requests
its first page from the server, the server attaches a session
identifier (also called session ID or SID) to the response. This
session identifier is a unique string of random characters which
the server associates with the current user.

When the SID is received by the client, it is stored locally
in a cookie. The client’s browser automatically attaches this
SID to all subsequent requests made to this server. Thus, the
server will know this is the same client that made the previous
request. This process is depicted in Fig. 1.

As such, it is possible for the server to remember a certain
client’s authentication state. This means that the user has to
enter his credentials only once, while remaining authenticated
for the rest of his browsing session.

It is important to note that session cookies are not the only
kind of cookies. Indeed, it is also possible for the server
to keep some other stateful information using cookies. For
example, a cookie can be used to remember the preferred
language (locale) of a client during his stay on a website.
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Fig. 2. The session fixation attack, adapted from [2]. Steps 1 and 2 are not
necessary if the server accepts random SIDs.

In this paper, we use the term cookie to refer to cookies in
general, and session cookie to refer to cookies containing a
session identifier.

B. The session fixation attack

As described in the previous section, web sessions are often
used for keeping a client’s authentication state. A problem
occurs, however, when an attacker is able to fixate the session
ID that a legitimate client is using to communicate with the
website. When this happens, the attacker can attach the same
SID to his requests, effectively making the server think that
the attacker is the same person as the legitimate client.

In the session fixation attack a victim is tricked into using
a session ID which is known by the attacker in advance. The
SID can then subsequently be used to impersonate the victim.
All this can be accomplished by going through the four steps
which are described next. A graphical depiction of the different
steps can be found in Fig. 2.

In the first step, the attacker needs to get a new SID. This
can be done by sending a request that doesn’t include a SID
to the server. The server will then attach a newly generated
SID to the response. Some servers also accept random SIDs1.
[7] In these cases, the attacker can just make up a new SID,
and no request needs to be made.

The next step consists of forcing the victim’s browser to use
the newly created SID. Ways in which the SID can be forced
upon the victim’s browser are the subject of the next section.

In the third step, the victim uses his credentials to log in
at the server. The SID that was set at the client machine
will automatically be attached to the request by the client’s
web browser. Because of this, there now exists a session at
the server in which the victim is logged in. That session is
identified by the known SID.

Finally, the attacker knows the SID that was used by the
victim when he logged in. Because of this, he can attach the
same SID to his own requests, making him able to take over
the victim’s session. This means the attacker is now able to
effectively act on the server as if he was the victim.

1By random SIDs, we mean that these SIDs don’t need to be generated by
the server in advance. A random SID can be sent by the client on his first
request.

C. Comparison to session hijacking

Session fixation is very similar to the session hijacking
attack described in [8]. In fact, the goal of the attacker in both
attacks is the same: he wants to know what session identifier a
victim is using to communicate with a certain web page. In the
session fixation attack, this is done by forcing the victim to use
a certain SID. In the session hijacking attack, the attacker waits
until the victim has established a session with the website.
Then, he captures the SID that is used in this session. The
difference is thus in the approach: while it is the attacker who
creates a session in the session fixation attack, it is the victim
who establishes the session in the session hijacking attack.

The consequence of both attacks is the same: since the
attacker knows the SID that the victim is using in his session,
he is able to impersonate the victim by attaching the same
SID to his own requests.

D. Forcing the victim’s browser to use a session ID

There are several ways in which the victim’s browser can
be tricked into using a specific session ID. We describe only
those that are most common. For a more extensive analysis of
forcing a browser to use a session ID, see [2] and [5].

1) Via URL parameters: The simplest method is that
of using URL parameters to set the session ID. An URL
containing a session ID parameter looks as follows: http:
//example.com/restricted.html?sessionid=d9qX4zKbg35. If the
website allows session IDs to be passed via URLs, the attacker
can craft a link containing the known SID as a parameter.
When the victim uses this link to log in, he will implicitly
send this SID to the server when the request is made. The
server will then assume that this is the victim’s SID. As such,
the victim is now using an SID that is known by the attacker.

Fortunately, most frameworks do not accept session IDs
via URL parameters. Because of this, and because making
a distinction between valid SIDs and attacker SIDs is nearly
impossible in this context, not much attention is given to this
way of forcing the use of a session ID in this text.

2) Via cross-site scripting (XSS): On some websites, it is
possible for the users to add content themselves. When the
website does not assert that this user-provided content does
not contain any HTML <script> tags, it is possible for an
attacker to inject random JavaScript into a web page. This
JavaScript will then be executed by a user’s browser when
he views the attacker’s user-provided content. This constitutes
the XSS attack. A more elaborate explanation of XSS can be
found in [10].

If the attacker is able to inject random JavaScript, he can
set the cookie containing the SID on the client machine
himself. This is because JavaScript is allowed to edit the
client’s cookies. To fixate a session cookie, the attacker injects
JavaScript code on the website he wants to set a cookie for.
In this JavaScript code, the value of the document.cookie
element is modified to contain a cookie for the known SID.

3) Via <meta> tag injection: In some cases, a devel-
oper will secure his website against XSS by stripping out
<script> tags from the input that is returned. Even then,
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the attacker will still have an option to set cookies via injected
HTML by making use of <meta> tags.

The <meta> tag is used to provide metadata
about the current HTML document. It is, however,
also possible to set a cookie using this tag. By
inserting the line <meta http-equiv=Set-Cookie
content="sessionid=1234"> somewhere in the
HTML document, a session ID with value 1234 will be set
at the client’s machine. Thus, if the attacker is able to inject
HTML containing this tag, he can make the user’s browser
use the session ID he chooses.

The client-side solution we develop in this paper protects
against the second (cross-site scripting) and the third (<meta>
tag injection) option for setting a parameter.

III. APPROACH OF THE CLIENT-SIDE SOLUTION

In this section, we describe the policy that is used to counter
session fixation attacks. Such a policy must be as unintrusive
as possible to the user, while still being able to stop all attacks.
This means that we have to make sure that websites will not
start behaving differently when the policy is enforced, and that
the policy may not introduce significant delays when the user
is browsing the web.

A. General principle

The reasoning behind the client-side solution developed in
this paper is that in general, session IDs are not very likely to
be set via JavaScript or <meta> tags. When a user logs on
to a web page, chances are rather large that, after a successful
login, he will be presented with a different page than the one
he used to log on. This page could either be a personalized
version of his homepage or the restricted page that required
the user to be logged in. It could even be just a simple page
which informs the user about the successful login.

As a basic policy, we choose to only allow those cookies in
outgoing HTTP requests that were previously set via a HTTP
response from the server. This policy is depicted in Fig. 3.
When a new SID is sent to the client via HTTP, the proxy
remembers this SID. When an outgoing request is sent to the
server, the proxy checks all outgoing SIDs. If one of these
hasn’t been set via HTTP, it is removed from the request. This
prevents all JavaScript and <meta> cookies from being used
over HTTP, effectively countering the session fixation attack
in the case that the SID was set via one these two channels.

B. Only applying the policy for session cookies

We want to apply the previously described policy only for
session cookies. To see why, consider the scenario where a
user can set the theme of the current web page by clicking a
button2. Because this theme can immediately be applied (by
changing the page’s css style on the fly), there is no need to
send an extra HTTP request to refresh the page. Thus, the
new theme preference can be stored in a cookie which is set
by JavaScript. On subsequent requests, however, this cookie

2The website http://www.last.fm, for example, allows a logged in user to
set his theme by clicking the ’paint it black’ link at the top of the site.

Fig. 3. Workings of the client-side solution. Top: an incoming response
containing a new SID. Bottom: an outgoing request containing a cookie set
via HTTP, and one set via JavaScript. The JavaScript cookie is stripped from
the request by the proxy.

needs to be sent to the server, to allow the latter to serve an
HTML page that uses the same style.

To make sure that the policy is only applied for session
cookies, we have to ask ourselves: when is a cookie a session
cookie? This problem is already thoroughly discussed in [1].
The classification laid out in that paper was altered a little bit
to make it suitable for our needs. We consider a cookie to be
a session cookie in the following cases:

• The name of the cookie is in a list of known SIDs. This
list contains names like phpsessid, aspsessionid
and jspsession. Most frameworks implementing a
session mechanism have default names for their session
IDs, which are included in this list.

• The name of the cookie contains the substring ’sess’
and the value of the cookie is a sufficiently long string
containing both numbers and characters.

• The cookie value passes a randomness test. For this, the
relative entropy of the cookie value is computed based
on the Shannon Entropy measure. [13] Afterwards, it is
calculated how many bits would be needed to encode the
string, based on [14].

There were also some exceptions made to these rules, to
accommodate for specific cases. A cookie is considered not to
be a session cookie if one or more of the following rules are
true:

• The name of the cookie is in a list of known non-SIDs.
This list contains names like locale and fontSize,
because cookies with these names are widely used across
the web and are very unlikely to contain session IDs.

• The name of the cookie corresponds to the name of
a web analysis cookie (e.g. __utma, __utmb). This
exception was added because web analysis cookies are
mostly set via JavaScript, while they are subsequently
set over HTTP. This is done so the web page is able to
fully load before the cookie is set, allowing for statistics
like page load time to be computed by the web analysis
framework. Because the values of web analysis cookies
are often random, they resemble session cookies, which
would cause them to be blocked by the extension if this
exception was not implemented.
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IV. IMPLEMENTATION OF THE CLIENT-SIDE SOLUTION

The solution was implemented both as a lightweight HTTP
proxy written in Python, and as an extension for Mozilla
Firefox. The implementation as a Firefox extension has a
number of advantages over the implementation as a HTTP
proxy.

The most important advantage is visible when an encrypted
(HTTPS) connection is used. In this case. a Firefox extension
is behind the SSL endpoint, while the proxy is in between the
SSL endpoints. This means that a proxy isn’t able to intercept
the HTTPS traffic, rendering it incapable to protect this kind of
traffic against session fixation. This is important because SSL
traffic is deemed to be more secure than normal (unencrypted)
traffic. Not protecting SSL traffic would be a major security
compromise.

A second advantage lies in the fact that an extension can
differentiate between the normal and private browsing modes
in the browser. Thus, it can make sure normal surfing cookies
are never mixed with private surfing cookies. A proxy would
allow cookies that were set during a private browsing session
to pass through in a normal browsing session.

Lastly, an additional advantage comes from the fact that
a browser already has an up-to-date list of top level domain
names. This comes in handy when checking whether a website
is trying to set a cookie for a valid parent domain (and not a
top level domain). Because of these advantages, we focus on
the implementation of the solution as a Firefox extension.

The implementation of the policy as a Firefox extension is
reasonably straightforward. The extension manages an extra
cookie store (separately from the Firefox cookie store). Cook-
ies are added to the store by parsing the Cookie headers
found in HTTP responses. Thus, only cookies that were set
over HTTP will be in this cookie store. On every HTTP
request, it is checked that all attached cookies are in the store.
If this is not the case for a certain cookie, it is stripped from
the request.

To make sure cookies are always set for a valid domain, it is
checked that domain parameters in cookies are always parent
domains or subdomains of the website the cookie was received
from. Also, Firefox’ top-level domain list [15] is used to make
sure no website can set a cookie for a top-level domain (such
as .co.uk).

V. EVALUATION

The solution was evaluated in four ways. First and foremost,
a simple HTTP server was created to make sure that the
implementation was according to the specification. This server
issues different kinds of cookies (both via HTTP and via
JavaScript), and checks which cookies are returned over HTTP.
Afterwards, the extension was used in real world scenarios by
some testers. Then, the extension was run on the top 100 most
visited sites according to Alexa [16]. Lastly, the performance
of the extension was tested. The first part of the evaluation
is straightforward. We describe the results of the other three
parts in this section.

A. Real-world usage

The real-world evaluation was done by distributing the
extension among test persons who were asked to watch for
any websites that break. The extension also kept a log of
every policy decision, noting whether a cookie was allowed
or blocked.

When the extension is configured to apply the policy to
all cookies (instead of just session cookies), the log shows
that only 32.19% of all cookies are allowed to be sent over
HTTP, leaving 67.81% of all cookies blocked by the extension.
These results are similar to earlier findings [17] about the top
100,000 most popular websites ranked by Alexa [16], where
it was found that 76.47% of these websites uses JavaScript
to set cookies. When we restrict the application of the policy
to only session cookies, the extension allows 80.47% of the
cookies to pass over HTTP. The remaining 19.53% is blocked.

We would assume that, with previously mentioned statistics,
the extension leads to a severely degraded user experience.
Surprisingly, the only problems that were mentioned by the
testers had other causes such as malfunctioning websites
or other poorly written extensions. Not a single problem
mentioned was due to the policy applied by our extension.
The reason for this is that when a cookie is set via JavaScript,
chances are quite high that this cookie will afterwards also be
read via JavaScript. Because this scenario is not blocked by
our policy, websites that work this way will keep working as
expected.

B. Alexa top 100

The extension was tested on the top 100 most visited
websites according to [16]. To make sure that all cookies
would be sent at least once, every one of these websites was
loaded twice. All websites were also loaded within the same
browser session to account for tracking cookies which are set
across websites.

The log files show that 90.95% of all cookies (or about
24195 cookies) was able to pass, while 9.05% (about 2407
cookies) was blocked. The blocking of these cookies did not
impede the user experience.

Note that only the homepages of these websites were tested.
Thus, our analysis does not account for login cookies.

C. Performance

The Firefox extension was profiled to see what delays
were introduced in a normal browsing session. This was done
separately for the requests (where it had to be checked whether
a cookie would be allowed) and the responses (where new
cookies could be set). All performance evaluation was done
on a computer with a dual-core processor running at 1.7GHz.

The average delays introduced in requests and responses
that contained cookies were respectively 5.8ms and 6.2ms.
Their distribution is shown in Fig. 4. The sum of the average
response and request delays is small compared to the time an
average web page takes to load [18], especially considering the
fact that not every request, and certainly not every response
contains cookies (averaged over all requests/responses the



5

Fig. 4. Distribution of delays introduced by the extension.

delays were only 1.25ms and 0.25ms). To achieve these
delays, a small tweak was needed to improve performance of
the implementation. This tweak makes sure that cookies are
always written to the database asynchronously [19]. When the
cookies are not yet written to the database, they are temporarily
kept in main memory to allow them to be accessed by requests
that happen in meantime.

On the GMail website3, delays can be much larger (up to
30ms for requests) because every time the page is refreshed, a
new cookie named GMAIL_STAT_xxx is set that does not
expire until the next day. Since all of these cookies have
a random value, it can take a while to execute the session
identifier check for all of them. It is not known what the
purpose of these cookies is. However, stripping them from
page requests does not cause anything to break on the website.

Currently, the extension uses its own separate cookie store.
Performance might be improved further by using Firefox’
cookie store to store the cookies. Then, an extra database table
must only hold the a parameter which indicates whether the
cookie was set via JavaScript together with an identifier to
look up the cookie in Firefox’ cookie store.

VI. RELATED WORK

A. Existing server-side solutions

In the literature, several server-side solutions have already
been proposed [2], [5]. These solutions can be divided into
three categories: solutions that work at the level of the server-
side code, solutions that work at the level of the server-side

3http://mail.google.com

Fig. 5. The server-side proxy proposed in [5]. Top: setting of a new cookie.
Bottom: checking the attached cookie in a request.

framework, and solutions that work as a server-side proxy. We
describe the main points of these defense methods here.

1) At the code level: At the code level, it is fairly easy to
protect against session fixation. Essentially, we only have to
make sure that a new session ID is given to the user every time
his authentication state changes. This way, when the attacker
knows the session ID in advance, he is not able to use it
anymore once the user has logged in. [3]

It is also mandatory that session destruction happens not
only at the client side, but also at the server side. A session
ID that can still be used after the session has expired is a
security risk.

2) At the framework level: Protection at the framework
level basically happens in the same way as protection at the
code level. There is one difference however: the framework
does not know when a user’s authentication state changes.
Because of this, the application developer has to tell the
framework which HTTP parameters might contain password
data. When one of these parameters appears in a request, the
framework will renew the session ID. This new SID will then
be attached to the next response.

3) Using a server-side proxy: In [5], a solution was pro-
posed in the form of a server-side proxy. This proxy introduces
an extra SID, which is tightly secured against session fixation
by employing the techniques described in the previous section.
This second SID is called the Proxy session identifier or PSID.
It only exists between the proxy and the client. Every time the
authentication state of the client changes, the PSID is renewed.
When a request is sent by the client, it is checked by the
proxy. If the PSID in the request is valid, it is removed before
forwarding the request to the server. If it is invalid, the request
is not forwarded to the server. A graphical depiction of the
server-side proxy can be found in Fig. 5.

In the same paper, it is argued that this solution should
also work at the client side, barring some small modifications.
It can however be easily shown that this approach won’t
work. When the attacker tries to fixate a session ID by using
techniques like response splitting or header injection [20], the
client-side proxy will attach a valid PSID to the malicious
response. Thus, subsequent requests by the client’s browser
that contain the fixated session ID will be allowed to pass
through the proxy. Also, since the attacker’s requests would
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never actually pass through the proxy, the server is not able
to differentiate between requests made by the legitimate client
and requests made by the attacker. As a consequence, the client
won’t be protected against this kind of session fixation attacks.

For the techniques handled in this paper (cross-site scripting
and <meta> tag injection) the client-side proxy will behave
similar to our client-side solution. This is not by design,
though: it is only a side-effect of the fact that the proxy is
not able to read the JavaScript or <meta> tags included in
the responses.

B. Comparison to HttpOnly cookies

When we talk about a solution which forces a differentiation
between HTTP and JavaScript, something has to be said about
HttpOnly cookies. HttpOnly cookies are cookies that may only
be accessed via HTTP, making them unavailable for scripts.
[21] The HttpOnly flag can be used to counter attacks wherein
XSS is used to get a user’s cookie value containing, amongst
others, the user’s session ID. The solution described in this
paper can be seen as the complement to HttpOnly cookies.
Indeed, our solution makes sure that JavaScript cookies are
not sent over HTTP, whereas HttpOnly cookies make sure that
HTTP cookies are not used via JavaScript. It can be stated that
our solution solves the session fixation attack in the same way
HttpOnly solves the session hijacking attack: by separating
JavaScript cookies from HTTP cookies. [1]

VII. FUTURE WORK

While cross-domain cooking [22] can also be used to
perform a successful session fixation attack, it was largely
ignored in this paper. Since our Firefox extension uses Firefox’
top-level domain list to determine whether a cookie is set for
a top-level domain, part of this problem is already solved.
However, a complete client-side solution for cross-domain
cooking would have to consist of prohibiting subdomains from
setting cookies for their parent domains. Our logs show that,
even for loading each of the homepages of Alexa’s top 100
websites only once, 427 cookies are set for a parent domain.
Because of this, it is currently not clear how such a solution
can be implemented without breaking lots of websites.

Other session fixation attacks make use of URL parameters
to set the session cookie (as was described in Section II-D).
They were also not considered in the current implementation.
A simple countermeasure could consist of stripping all SIDs
from URLs. It should be measured what the impact of such a
countermeasure would be.

The current solution was only prototyped as a HTTP proxy
and implemented as a Firefox extension. Similar extensions
could be written for other browsers.

The extension could be extended with the client-side solu-
tion against session hijacking described in [1]. Both solutions
work by keeping a separate store of session IDs. A difference
is that in our solution, cookie management is still ultimately
handled by the browser. In [1], session IDs are completely
handled by the client-side proxy.

VIII. CONCLUSION

In this paper, we have shown the need for a client-side solu-
tion against session fixation. Server-side countermeasures are
easy to implement but are unfortunately not widely adopted.
Because of this, the client must be able to protect himself
against this attack.

A client-side solution was proposed. This solution is based
on a clear separation between cookies set via JavaScript and
cookies set via HTTP. Because it is unlikely that legitimate
session cookies will be set via JavaScript, this mostly affects
session cookies that were set in a session fixation attack.

The solution was then implemented as a Firefox extension,
which applied the policy only for session cookies. This was
done by checking the cookies for properties that are common
in session cookies.

The extension was evaluated to see how many websites
would break in real-world web browsing scenarios. We found
that, thanks to some exceptions implemented for e.g. web anal-
ysis cookies, all websites kept working as expected. Several
cookies were still blocked in real-world scenarios, but they do
not influence the user experience since they are never read by
the server over HTTP.

We can thus conclude that we have found a robust client-
solution for two of the most common ways of executing a
session fixation attack. This solution has very little impact on
the user experience, while making sure the user is protected
against these forms of attack.
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