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Abstract

Smartphone and other mobile device usage has increased greatly in the past years. This
increased popularity has also led to a changed security and privacy landscape, with more
personal devices being outfitted with a plethora of sensors that allow to track our every step,
and a vastly larger attack surface than older, more static devices. This allows a variety of
actors, including malicious hackers, state-sponsored entities and legitimate service providers,
to have access to a large trove of mobile user data.

In this dissertation, we assess the current state of privacy and security on smartphones, we
create and gauge awareness of smartphone users around these issues, and we provide so-
lutions to enhance security and privacy on mobile devices. To show the ease with which
smartphone users’ data can be gathered surreptitiously, we describe a mechanism for invol-
untarily tracking visitors at mass events making use of Wi-Fi technology, and show that this
can be implemented at a low cost, allowing location tracking of 29% of visitors at a major
music festival. We show how these techniques can be (ab)used in different scenarios (notably,
by using the gathered data to compare different opportunistic routing algorithms that can be
used for ad-hoc communication at mass events), and provide an open platform to researchers
that can be used to quantify the impact and remediation rate of similar wireless protocol
vulnerabilities.

We create awareness about these issues, and we explain to smartphone users how they can
secure themselves against them. For this, we provide a method to inform mobile device
users when using wireless networks, showing privacy-sensitive (but anonymized) informa-
tion about passers-by on a public display. We later use the same setup to inform audiences in
talks on security awareness. Results from our user studies also show that specific, personal-
ized scenarios may help to better inform users about security and privacy issues (increasing
awareness of 76% of the participants in one study), and that the increased awareness leads to
as much as 81% of device users willing to put an extra effort into securing their smartphones.
Interestingly, we also show in a later study that an increased awareness does not automatically
translate to better security practices.

Additionally, we perform two studies to measure users’ privacy and security behaviors when
using their smartphones. For the first study, we look at how aware users are about connections



ii

being made by apps on their device, while taking into account the security of both the Wi-
Fi networks used and the connections made over these networks. For the second study, we
extend the Paco ESM study tool to be able to examine the reasons why Android users install or
remove an app at the time this happens, to look at the motivation behind granting or denying
a permission right after users make their choice, and to assess how comfortable and aware
users are about their decisions at a later point in time.
We provide recommendations to different stakeholders (developers, manufacturers, network
providers, researchers and mobile device users) on how to improve privacy and security on
mobile devices without affecting usability, some of which have already been implemented by
operating system manufacturers. Part of these recommendations are implemented as a tool
that automatically mitigates Wi-Fi attacks for Android smartphones, which is distributed to
the general public. In addition, we formulate a proposal to improve transparency in how user
data is shared by service providers to third parties.



Acknowledgments

This dissertation is the result of work conducted during the period between September 2011
and June 2017 at Hasselt University. It would have never been possible without the help of
some people, whom I would like to thank here.

First, many thanks go out to my promotor and co-promotor Wim Lamotte and Peter Quax.
They provided me with the necessary guidance throughout the past 6 years, not only with
respect to the research that went into completing my PhD, but also through assistance when
performing teaching duties. When performing experiments involving deploying and moni-
toring large amounts of Wi-Fi scanners, they were also there to help with the hands-on work,
soldering together the scanners and climbing structures to suspend them. Without their con-
tinued support, this thesis would not have been possible.

I also want to thank my PhD jury: Frank Van Reeth, Igor Bilogrevic, Karin Coninx, Lieven
Desmet, Marc Gyssens and Tristan Henderson, for reviewing my text, and for their comments
that helped make this dissertation.

I want to thank the rest of the EDM, and by extension the entire computer science fac-
ulty for the great working environment. Specifically, I want to mention Arno Barzan and
Pieter Robyns, who have contributed greatly to this research, and helped in keeping me sane
throughout this work. They were always there for support and laughs. I also want to thank
Kris Luyten, Jo Vermeulen, and Fabian Di Fiore, for respectively encouraging me to go work
at Google, for the genuine interest in my work, and for dark industrial techno.

Similarly, I want to thank Sai Teja Peddinti, Nina Taft, and the rest of the wonderful people I
had a chance to work with at Google for the awesome working environment. They immedi-
ately made me feel like part of the team, and supported my work all the way through, even at
the expense of other projects they had to manage at the same time.

There are some other people who provided great support for individual experiments. First
of all, a huge thanks goes out to the Pukkelpop organization, including Chokri Mahassine
himself, for allowing us to perform our experiments at their festival, and to The Safe Group
for helping out and for staying incredibly nice while we abused their infrastructure. Thank
you also to Bob Hagemann and the rest of the WiGLE.net team, for allowing the nearly



iv

unlimited use of their wardriving database to inform people about the dangers of wireless
networks.
Lastly, I want to thank my parents and my brother (who is incidentally also my best friend),
my girlfriend Tine, all my other amazing friends1 and possibly the best family in the world.
They all contributed so much to this thesis without even realizing it, by encouraging me to
pull through, and by just being the nicest and friendliest people around.

Thank you all so much,

Bram Bonné

1“Friends” sounds so offhanded. So here we go; at the very least (apart from family and (ex-)colleagues): Alicja,
Andrea, Anneleen, Ben, Bert, Brecht, Carl, Cedric, Daniël, Dries, Eef, Hannah, Hanne, Hélène, Ian, Ine, Jasper,
Jimmy, Joachim, Joke, Jolien, Julie, Kevin, Koen, Koenraad, Kristof, Lore, Lowie, Maarten, Marijke, Marleen,
Michelle, Miet, Nathalie, Nel, Nico, Phung, Rachel, Roald, Ruben, Sam, Sarina, Sebastiaan, Sophie, Stephanie,
Thierry, Thijs, Tiberd, Tinne, Tom, Wim, Xavier and Yifei.



Contents

Abstract i

Acknowledgments iii

Contents v

1 Introduction and research questions 1

I Security and privacy issues in smartphone connectivity 7

2 WiFiPi: Involuntary Tracking of Visitors at Mass Events 11
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.3 Technical background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3.1 Scanning for wireless networks . . . . . . . . . . . . . . . . . . . . 15
2.3.2 Connecting to a network . . . . . . . . . . . . . . . . . . . . . . . . 18

2.4 The WiFiPi detection mechanism . . . . . . . . . . . . . . . . . . . . . . . . 18
2.4.1 Detecting a device . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.4.2 Tracking the location of a device . . . . . . . . . . . . . . . . . . . . 20

2.5 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.6 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.6.1 Pukkelpop 2012 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.6.2 University campus . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.6.3 Pukkelpop 2013 and WiFiPi 2.0 . . . . . . . . . . . . . . . . . . . . 25

2.7 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.7.1 Real-time crowd management and marketing . . . . . . . . . . . . . 28
2.7.2 Mobility models for simulations . . . . . . . . . . . . . . . . . . . . 29
2.7.3 Ubiquitous computing . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.8 Privacy implications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30



vi CONTENTS

2.9 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3 A Comparative Simulation of Opportunistic Routing Protocols Using Realistic
Mobility Data Obtained From Mass Events 33
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.2 Background and Related Work . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.3 Mobility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.3.1 Collecting Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.3.2 Calculating movement paths . . . . . . . . . . . . . . . . . . . . . . 37

3.4 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.4.1 Simulation Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.4.2 Routing Protocols . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.5 Results and analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.5.1 Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.5.2 Individual Protocol Examination . . . . . . . . . . . . . . . . . . . . 44
3.5.3 Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.5.4 Candidate Selection . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4 Assessing the Impact of 802.11 Vulnerabilities using Wicability 49
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.2 Capability aggregation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.2.1 Acquisition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.2.2 Matching and processing . . . . . . . . . . . . . . . . . . . . . . . . 53
4.2.3 Presentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.3 Case study: prevalence of devices susceptible to active probing attacks . . . . 54
4.4 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

II Creating and assessing user awareness 61

5 Raising Awareness on Ubiquitous Privacy Issues with SASQUATCH 65
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
5.2 Mobile Phones that “Never Forget” . . . . . . . . . . . . . . . . . . . . . . . 68
5.3 The SASQUATCH System . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.3.1 Inferring a smartphone’s whereabouts . . . . . . . . . . . . . . . . . 69
5.3.2 Determining a network’s authentication type . . . . . . . . . . . . . 70

5.4 Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
5.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
5.6 System analysis and limitations . . . . . . . . . . . . . . . . . . . . . . . . . 77



CONTENTS vii

5.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

6 Understanding Wi-Fi Privacy Assumptions of Mobile Device Users 81
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
6.2 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
6.3 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

6.3.1 Connection monitoring . . . . . . . . . . . . . . . . . . . . . . . . . 86
6.3.2 Exit survey . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

6.4 Participants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
6.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
6.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
6.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

7 Exploring privacy-sensitive decision making in Android using in-context surveys101
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
7.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
7.3 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

7.3.1 Designing the Surveys . . . . . . . . . . . . . . . . . . . . . . . . . 107
7.3.2 Recruitment and Incentives . . . . . . . . . . . . . . . . . . . . . . . 110
7.3.3 Ethical Considerations . . . . . . . . . . . . . . . . . . . . . . . . . 110
7.3.4 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

7.4 Technical implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
7.4.1 App Installation and Removal Triggers . . . . . . . . . . . . . . . . 112
7.4.2 Permission Change Triggers . . . . . . . . . . . . . . . . . . . . . . 113
7.4.3 Generating and Surfacing Surveys . . . . . . . . . . . . . . . . . . . 113

7.5 App Decisions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
7.5.1 Data Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
7.5.2 App Installs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
7.5.3 App Removals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

7.6 Permission Decisions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
7.6.1 Permission denials . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
7.6.2 Permission Grants . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
7.6.3 Other influences . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

7.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

III Towards improving security and privacy for mobile devices and
users 133

8 Technical solutions to smartphone privacy and security issues 137
8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139



viii CONTENTS

8.2 Recommendations on smartphone security . . . . . . . . . . . . . . . . . . . 139
8.2.1 What the smartphone user can do . . . . . . . . . . . . . . . . . . . 139
8.2.2 What a developer / manufacturer can do . . . . . . . . . . . . . . . . 141
8.2.3 What network providers and ISPs can do . . . . . . . . . . . . . . . 143
8.2.4 What security and privacy researchers can do . . . . . . . . . . . . . 143

8.3 Automatically solving privacy issues with Wi-Fi PrivacyPolice . . . . . . . . 144
8.3.1 Preventing network leakage . . . . . . . . . . . . . . . . . . . . . . 145
8.3.2 Preventing evil twin attacks . . . . . . . . . . . . . . . . . . . . . . 145
8.3.3 From proof-of-concept to consumer app . . . . . . . . . . . . . . . . 146

8.4 Comparison to other mitigation strategies . . . . . . . . . . . . . . . . . . . 147
8.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

9 The Privacy API: Facilitating Insights In How One’s Own User Data Is Shared 149
9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
9.2 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
9.3 The API in practice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
9.4 Methods of enforcement . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
9.5 Considerations and limitations . . . . . . . . . . . . . . . . . . . . . . . . . 156
9.6 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
9.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
9.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

10 A look at the future: the Internet of Things 159

11 Conclusion and Future Work 165
11.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
11.2 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

Appendices 173

A Nederlandse Samenvatting (Dutch Summary) 175

B Survey questions for the study on Wi-Fi privacy 177
B.1 Recruitment survey questions . . . . . . . . . . . . . . . . . . . . . . . . . . 178
B.2 Exit survey questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178

B.2.1 Introductory questions . . . . . . . . . . . . . . . . . . . . . . . . . 179
B.2.2 Network questions . . . . . . . . . . . . . . . . . . . . . . . . . . . 179
B.2.3 General questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180
B.2.4 Connection awareness questions . . . . . . . . . . . . . . . . . . . . 181
B.2.5 Feedback question . . . . . . . . . . . . . . . . . . . . . . . . . . . 181



CONTENTS ix

C Survey questions for the study on Android permissions 183
C.1 In-situ questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184

C.1.1 App installation scenario . . . . . . . . . . . . . . . . . . . . . . . . 184
C.1.2 App removal scenario . . . . . . . . . . . . . . . . . . . . . . . . . 185
C.1.3 Permission grant scenario . . . . . . . . . . . . . . . . . . . . . . . 185
C.1.4 Permission deny scenario . . . . . . . . . . . . . . . . . . . . . . . . 186

C.2 Exit Survey . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

D Scientific Contributions and Publications 189

Bibliography 209



x CONTENTS



Chapter 1

Introduction and research questions

Since the earliest computers, computing devices have become smaller and more personal over
time. The earliest commercial general purpose computers, such as the Ferranti Mark 1, the
UNIVAC and the IBM 650, measured somewhere in the order of 10 m3. The invention of the
transistor – replacing large vacuum tubes in the earlier computers – caused computers to be
much smaller in size, an effect that was reinforced by the advent of integrated circuits, which
allowed for a personal computing device in every household. The System on a Chip (SoC)
is the latest step in consolidating even more of the circuitry into a single chip, supporting the
development of ever smaller and more mobile computing devices such as smartphones and
smartwatches.
Smartphone and other mobile device usage has increased greatly in the past years: even dur-
ing the six years it took to complete the research reflected in this dissertation, the device usage
landscape has changed significantly. Data from Eurostat shows that over the past 5 years, the
number of individuals in the EU aged 16 to 74 that are using a mobile phone to access the
internet has increased from only 19% in 2011 to 56% in 2016 [Eurostat, 2016]. This trend
is even more noticeable in emerging economies: in just two years, smartphone ownership
rates have increased by more than 25% (with an increase of 42% in Turkey alone) [Poushter,
2016].

The rise in popularity of mobile devices has also led to a changed security and privacy land-
scape. Every step of the miniaturization of computers has caused them to become more
personal. Indeed, the earliest computers were largely tied to a company and used by different
employees of the same corporation; personal computers were tied to a household and used
by different members of the same family; smartphones, finally, are almost always tied to a
single person. As smartphones are considered to be at least as private by their owners as
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desktop computers [Urban et al., 2012], they contain a trove of personal data, with access
to even more data through apps that are connected to cloud services and persistent logins to
websites in the device’s web browser. Adding to this is the fact that smartphones contain a
wealth of sensors (including, among others, an accelerometer, a GPS chip, a Wi-Fi chip and
a light sensor), and that they are always carried around by their owners, something that has
earned them the nickname of ‘ideal tracking device’.

Not only do these devices contain more data, this data is also more easily available to (both
benign and malicious) third parties. First, smartphones are always-on, always-connected
devices, which increases the number of channels and time over which their privacy-sensitive
data is available. Furthermore, because of their form factor and mobility, these devices can
get lost or stolen more easily. Because of these reasons, smartphones are deemed to have a
large attack surface, consisting of the number of ways a third-party malicious actor is able to
attempt to access the data.

Not only malicious actors are attempting to gather privacy-sensitive data of smartphone
users. Increasingly, legitimate entities are gathering this information for various purposes.
One example is state-sponsored actors, of which we know from e.g. the Snowden leaks
and WikiLeaks’ CIA files that they actively use data-gathering techniques to collect infor-
mation from mobile devices. Another common example of non-malicious actors gathering
privacy-sensitive data are internet services that, instead of (or in addition to) asking for a
direct payment, monetize their users’ data as their main source of revenue. This includes
not only social networks; non-free service providers such as mobile operators or hardware
manufacturers have also been using these methods as a way to increase their revenue. [Lee,
2016; Troianovski, 2013]. All of these services have access to (part of) this large trove of
mobile data, either because their app or website requires it as part of providing their service,
or because they control (part of) the connection the smartphone has with the internet. In
some instances, these third parties do not even require any cooperation from the user. Indeed,
techniques that will be described throughout this text are already being used by commercial
entities to gather data on their customers. Despite the predominant public opinion that this
type of data collection is only possible for large organizations with world-wide networks, both
legitimate and illicit data gathering can be done with a fairly simple setup using off-the-shelf
wireless hardware.

Furthermore, the rise in popularity of mobile devices has also caused Wi-Fi networks to
become more prevalent, often being offered by either commercial or public entities, or by
internet service providers (ISPs) as a service to their customers. Indeed, as we will show in
Chapter 6, users connect to an average of 8 Wi-Fi networks in a 30-day period. Connecting
to the internet using one of these Wi-Fi networks entails some form of trust: the connections
themselves – and, in case these connections happen unencrypted, their data – can be mon-
itored by the provider of the network. Moreover, networks provided by these entities often
lack any form of security, allowing not only the network provider, but also other third parties
within range of the network to eavesdrop on communications.
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The aim of this work is to assess the current state of privacy and security on smartphones,
to create and gauge awareness of smartphone users around these issues, and to provide so-
lutions to enhance security and privacy on mobile devices. We start from the main question
“Are mobile device users aware about the security and privacy issues inherent in using their
devices?”, and deduce the following research questions from this:

RQ1 What privacy and security issues exist in using a smartphone on wireless networks?
How can these issues be (ab)used by a third party?

RQ2 How prevalent are the aforementioned issues in today’s devices?

RQ3 Are mobile device users aware about personal data transmitted by their devices?

RQ4 Does privacy sensitiveness influence the behavior of mobile device users?

RQ5 How do mobile device users make decisions regarding privacy sensitive data?

RQ6 Can we inform non-technical mobile device users about the aforementioned risks?
Does the increased awareness cause better security habits?

RQ7 How can we improve privacy and security for mobile device users?

In the first part of this thesis, we describe the privacy and security issues that result from the
shift to mobile device usage, aiming to tackle research question RQ1. We will see that on
one hand, there is a major impact on the security of these devices: while attacks on Wi-Fi
networks and their users have existed for a long time, they have become more prevalent as
devices are more mobile, and the attack surface (in the form of Wi-Fi networks) has increased
in size. On the other hand, privacy of mobile users might be impacted even more, as the shift
to mobile devices has opened a whole new range of techniques for gathering privacy-sensitive
information. As we will see, mobile devices allow the location of their users to be tracked
surreptitiously by third parties, and allow these third parties to infer personally identifiable
data from the user by monitoring only their signals. We show how these techniques can be
(ab)used in different scenarios, and provide a way for observing how prevalent security issues
are in today’s devices (covering research question RQ2).
The second part provides an assessment of how aware mobile device users are about the issues
discussed in the first part, tackling research questions RQ3 to RQ6, while in the meantime
continuing our assessment of the prevalence of security issues in modern devices (research
question RQ2). This is done in three different studies. The first two studies include presenting
participants with their own privacy-sensitive information that we were able to gather. These
studies provide an image of how aware users are about the ability for third parties to gather
privacy-sensitive information from their devices (and the consequences thereof), and of how
concerned users are about this information being available. At the same time, our studies aim
to increase awareness among smartphone users by informing them about existing issues. We
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will see that, whereas these issues are very prevalent due to the way mobile devices are used
nowadays, users are often unaware. While we will demonstrate techniques that are highly
effective in increasing this awareness, we will also show that, interestingly, an increased
awareness does not automatically translate to better security practices. We end the second
part with a third study, exploring how users make privacy sensitive decisions when using
their devices, by employing an experience sampling methodology in order to ask users the
reasons influencing their decisions immediately after they decide.
In the third part of this thesis, we provide a variety of different solutions to the problems
presented in the second chapter, from a variety of contexts. These solutions are presented
as suggestions to changes in technology, habits and legislature, and in the form of actual
implementations. This addresses our final research question RQ7.
Our main contributions are as follows:

C1 We describe a mechanism for involuntary tracking of visitors at mass events which
makes use of Wi-Fi technology, and show how this can be implemented at a low cost
(related to RQ1).

C2 We compare and select different opportunistic routing algorithms that can be used for
ad-hoc communication at mass events, based on simulations with real mobility data.
We were helped for performing the actual simulations by Arno Barzan.

C3 We provide an open platform to researchers that can be used to quantify the impact and
remediation rate of wireless protocol vulnerabilities (related to RQ2). Pieter Robyns
helped by extracting the information from various datasets.

C4 We provide a method to inform mobile device users about privacy and security issues
when using wireless networks, and use this method to successfully create user aware-
ness, explaining how to secure against these threats in the process (related to RQ1 and
RQ6).

C5 We provide statistics on mobile users’ privacy and security practices on wireless net-
works, in the form of data about Wi-Fi usage and connections made by apps (related
to RQ2).

C6 We assess mobile users’ awareness about insecure connections being made by apps on
their devices over insecure wireless networks, together with the users’ level of comfort
about these connections (related to RQ3). We analyze the impact of expertise in com-
puter networks and the usage of privacy enhancing technologies on this awareness and
RQ4). Gustavo Rovelo Ruiz generated statistics from the survey dataset.

C7 We extend the Paco ESM study tool to be able to query users about the reasons behind
privacy-related decisions they make on their Android device, and make these modifi-
cations available to the broader research community.



5

C8 We conduct the first study that examines the reasons why Android users install or
remove an app at the time this happens, and the motivation behind granting or denying
a permission right after users make their choice (related to RQ5). We also assess how
comfortable and aware users are about their decisions at a later point in time (related
to RQ3). This study was performed together with Sai Teja Peddinti, Igor Bilogrevic
and Nina Taft, all helping out in equal amounts with the data analysis.

C9 We provide recommendations to different stakeholders (developers, manufacturers,
network providers, researchers and mobile device users) on how to improve privacy
and security on mobile devices without affecting usability. These recommendations
are based on the results from our previous studies (related to RQ7). In addition, we
formulate a proposal to improve transparency in how user data is shared by service
providers to third parties.

C10 We design and develop a tool that automatically mitigates Wi-Fi attacks for Android
smartphones (related to RQ7), and make this tool available to the general public.

We presented our contributions to the larger research community, in the form of three jour-
nal publications, three presentations and publications at international conferences, and three
presentations and publications at workshops. In addition to purely scientific contributions,
we aimed to increase awareness through scientific outreach, by giving talks on security and
privacy to the general public (including members and staff of the European Commission,
members of multiple city councils, and younger children). A more complete list is available
in Appendix D.
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Part I

Security and privacy issues in
smartphone connectivity





Introduction

For long, mobile phones have been thought of as “trusted devices”: they are used for private
communication, coupled to a single user. However, in a time where smartphones dominate
the mobile landscape, this trust is often unfounded. In reality, smartphones are known to
collect all kinds of data – ranging from a user’s contacts to precise location data – via many
different channels. For example, leaked documents by Edward Snowden show that popular
smartphone apps were targeted by the NSA and GHCQ because of the vast amounts of user
data they collect (as published in The Guardian on January 27, 2014).
Even though a significant amount of people carry a smartphone around all the time, most
of them are unaware about the privacy impact of using such a device to connect to wireless
networks. For example, we will show that the strategies currently used by mobile operat-
ing systems to search and connect to available wireless networks involve sharing a list of
previously accessed networks.

The first part of this dissertation describes a method that allows smartphone users to be
tracked by a third party surreptitiously (that is, without active cooperation of the smartphone
users themselves). We show how this method can be implemented at very low cost on Rasp-
berry Pi computers, and trial its implementation in two different contexts: a popular Belgian
music festival and our university campus. The fact that this low-cost implementation allows
a multitude of parties to surreptitiously track smartphone users leads to important security
concerns.

Apart from discussing the security issues themselves, we also show how this method can
be used for other research, providing the example of using the gathered mobility data to
perform simulations of different opportunistic routing protocols. The routing protocol that is
deemed to work best in the situations of real mobility could then be considered suitable for
creating applications routing data between smartphone users directly, without the need for
any network infrastructure.

We close the first part of this thesis by describing a system that allows researchers to find
the impact of these kinds of wireless vulnerabilities, through the automated collection and
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analysis of large datasets containing IEEE 802.11 Information Elements (IEs) transmitted
by access points and stations. These IEs allow to see the capabilities that are supported by
devices, thereby showing the fraction of devices that are at risk.
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2.1 Introduction

With the recent growth of smartphone usage, a large percentage of the population now carries
a device frequently sending out signals, which can be detected by eavesdroppers nearby. At
the time we published the work from which this chapter is derived (June 2013), it was esti-
mated that over 50% of U.S. mobile subscribers owned a smartphone [Nielsen, 2012]. This
number was only expected to increase over time as more than 1.3 million new Android de-
vices are activated worldwide every day [Spradlin, 2012]; a prediction that, as we mentioned
in Chapter 1, was confirmed afterwards. Modern smartphones have Wi-Fi communication
enabled by default, allowing their owners to be detected at any moment by scanning the ether
for Wi-Fi packets broadcast by their devices.
In this chapter, we show one specific way in which smartphone users are exposing themselves
to third parties gathering privacy-sensitive data; we show how their Wi-Fi signals allow them
to be tracked involuntarily across a specific area. To someone trying to gather movement data
from specific smartphone users, involuntary tracking provides a significant advantage com-
pared to other techniques for tracking where the subjects need to actively cooperate, either by
carrying a specialized tracking device or by actively and willingly sharing information about
their location. Systems like the one described in this chapter do not require user consent
and are therefore capable of tracking a much larger sample set of the population. At the same
time, this creates a disadvantage to the smartphone users themselves, who are tracked without
their consent and possibly without knowing the tracking is taking place.
This chapter makes the following contributions. First, we describe a mechanism for tracking
visitors at mass events which makes use of Wi-Fi technology. We explain how this mecha-
nism works at a high level, and continue by discussing its implementation. Next, we describe
how the detection mechanism was and is being used in two different contexts to infer move-
ment patterns from visitors. One of these contexts is a three-day international music festival
attracting 100 000 visitors every year. The other is a university campus, where we have been
tracking students and staff for a period of three months. Section 2.7 provides an overview of
possible applications of the tracking method in different domains. In Section 2.8, privacy im-
plications for this technology are discussed. We conclude and present an overview of future
work in section 2.9.

2.2 Related work

Several techniques have been proposed over the years to accomplish location determination
and to provide the ability to track the movement of objects and people. One of these tech-
niques is the use of wireless sensor networks (WSNs), where tiny motes are attached to
objects to achieve tracking abilities [Kung and Vlah, 2003]. Although a high degree of pre-
cision can be obtained, the disadvantages of such a method are clear: the cost of motes is
non-negligible, they are not available off-the-shelf and, as such, the number of objects that
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could be tracked is limited in practice. A WSN system requires active consent and participa-
tion from users to carry the motes. Alternatively, the use of tracking applications (sometimes
as part of applications providing other functionality) on more common hardware equipped
with GPS sensors has been proposed. Although this approach solves the cost issue to some
degree, users still need to actively collaborate in the tracking by installing an application
and agreeing to be tracked (unless the tracking software is part of malware, a topic which
is not discussed here). Given the fact that the goal is to show how a non-obtrusive tracking
technique that requires no active consent from people being tracked can be designed, these
methods are not applicable.

Versichele et al. [Versichele et al., 2012] developed a method for tracking people at mass
events which uses Bluetooth signals sent out by mobile phones to detect a person’s loca-
tion. While similar to the approach described in this chapter, this detection method requires
phones to have their Bluetooth functionality set to ’discoverable’, a feature which is disabled
on modern smartphones for security reasons [Android Open Source project, 2013; Apple
Inc., 2012]. Because of this limitation, Bluetooth tracking can only be used to track older
generation cell phones, resulting in a coverage rate of around 8% of the population at the
time of our experiments. We expect this coverage rate to have decreased even further in 2017
as more people switched from older cell phones to smartphones. Our approach on the other
hand requires only control signals sent out as part of the 802.11 protocol, which are required
for Wi-Fi communication to function properly. This tracking method is future proof because
unlike Bluetooth, Wi-Fi is enabled by default on modern smartphones. Furthermore, our
method does not depend on a smartphone being put into a discoverable mode, nor does it
require the smartphone to be actually connected to a wireless network. The tracking method
of Versichele et al. can be used complementary to our own method to allow for tracking visi-
tors using both Bluetooth and Wi-Fi signals. Using this combination, both older cell phones
and smartphones can be tracked, which may provide a coverage rate close to the sum of the
individual coverage rates for both tracking methods.

Other work has been done in the area of using Wi-Fi communication to obtain information
(besides location) about smartphone users. Cunche et al. have used passive Wi-Fi monitor-
ing [Cunche and Boreli, 2012] to derive social links between smartphone owners. Moreover,
Rose et al. [Rose and Welsh, 2010] have shown that SSIDs found in 802.11 probe requests can
be used to produce a list of locations a smartphone user has visited. The described technique
works by looking up the broadcasted SSIDs in the WiGLE wardriving database [WiGLE.net,
2016]. This database contains the locations of different wireless networks all over the world,
submitted by users, and identified by their SSIDs. Our approach differs from the work done
by Rose et al. in that it allows for tracking users without the presence of an infrastructure
of access points (with specific SSIDS). Rose’s method also is unable to infer the time at
which a device was at a certain location. In Chapter 5, we will build upon and extend Rose’s
method to create awareness among smartphone users. Similarly, Becker et al. [Becker et al.,
2013] have described how cellular telephone networks can be used to study human mobility
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on a large scale. This, too, measures mobility on a much larger, less granular scale than the
technique described in this chapter.
Network simulations use either synthetic movement data or data gathered from real-life crowd
tracking, with a preference for the latter [Aschenbruck et al., 2011; Camp et al., 2002]. The
CRAWDAD data archive [Yeo et al., 2006a] is a resource containing wireless trace data from
many contributing parties. Methods for acquiring this data vary from equipping people with
sensors to using network traces from access points which are under the control of researchers.
We believe that our method can provide substantial benefits for people willing to extend
the CRAWDAD data archive, by allowing for tracking of visitors without requiring active
cooperation.

2.3 Technical background

Before we discuss how the WiFiPi system is able to track the location of a device, we first pro-
vide a high-level overview of the parts of the 802.11 protocol which are exploited to achieve
this, and which will allow us to collect privacy-sensitive information about smartphone users
in the SASQUATCH study described in Chapter 5.

2.3.1 Scanning for wireless networks

Before a wireless (IEEE 802.11) device can connect to a network, it needs to be aware of the
different access points that are in range. The IEEE 802.11 standard [IEEE Standards Asso-
ciation, 2012] describes two different methods that can be used to scan for wireless (IEEE
802.11) networks: passive scanning (or ‘stumbling’) and active scanning. Passive scanning
(see Figure 2.1(a)) is used with all regular networks. This method works by listening for
specific packets – called beacons – which are sent out by access points with small intervals.
These beacons contain, among other information, the SSID of the access point. By listening
for these packets, a device knows exactly which networks are in range.
The active scanning method (see Figure 2.1(b)) is used in a second class of wireless networks,
called hidden or cloaked networks. In order to remain invisible to devices unaware of its
existence, this type of network does not send out beacons. Instead, devices that know of this
network need to scan for the access point’s presence in a proactive manner. For this purpose,
probe requests are used. Broadcasting a probe request containing a specific SSID is similar to
asking: “Is the network with name SSID around?”. If an access point receives a probe request
containing its own SSID, it responds by sending a probe response directly to the device that
sent out the probe request, notifying the device of its presence.
Active scanning is also used when scanning for known (or ‘remembered’) networks in mod-
ern smartphones. Since constant passive scanning requires the smartphone’s Wi-Fi radio to
be powered even when no connection is available, this method would have a significant im-
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(a) Passive scanning. The access point broadcasts its availability to everyone
in range.

(b) Active scanning. The smartphone actively searches for access points that
are in range.

Figure 2.1: The difference between active and passive scanning in modern Wi-Fi devices.

pact on the smartphone’s battery life. Because of this, Android, iOS and Windows Phone
implement a mechanism that works as follows:

1. Send out a probe request for the first ‘remembered’ network in the smartphone’s pre-
ferred network list (PNL).

2. Keep the Wi-Fi radio powered on for a short amount of time, listening for access points
sending probe responses.

(a) If a probe response is received, initiate a connection with the network.

(b) If no probe response is received within the chosen time window, go back to step
1 while choosing the next network in the PNL.

(c) If no probe response is received, and we arrived at the last network in the PNL,
put the Wi-Fi radio to sleep for n seconds (the probe request interval).

In reality, smartphones running Android send probe requests only for the first 16 networks
in their PNL, as can be seen from the WPAS_MAC_SCAN_SSIDS constant in the source code.1

1The source code for wpa_supplicant as it is included in Android 7.7.1 is available at http://androidxref.
com/7.1.1_r6/xref/external/wpa_supplicant_8/src/drivers/driver.h.

http://androidxref.com/7.1.1_r6/xref/external/wpa_supplicant_8/src/drivers/driver.h
http://androidxref.com/7.1.1_r6/xref/external/wpa_supplicant_8/src/drivers/driver.h


2.3 Technical background 17

Table 2.1: Average values of probe request intervals for popular smartphone vendors.

Vendor Interval Sample size
Sony 11 seconds 3 devices

Samsung 22 seconds 30 devices
Huawei 23 seconds 5 devices
Apple 24 seconds 149 devices
Nokia 25 seconds 11 devices
HTC 26 seconds 9 devices
Asus 30 seconds 4 devices

Blackberry 30 seconds 2 devices
LG 32 seconds 16 devices

Devices running iOS are not known to limit the amount of networks for which a probe request
is broacasted.

The probe request interval, i.e. the number of seconds during which the Wi-Fi radio is put
to sleep in between scanning for the same set of networks, is dependent on the smartphone
vendor, model, operating system and on the state of the smartphone (standby, screen on,
connected to a network, etc.) [Cisco Systems, 2013]. Based on our preliminary experiments,
we list the average probe request intervals for some popular vendors in Table 2.1. For this,
we captured probe requests for all devices at the university’s main hall. For every device, we
calculated the average time between bursts of probe requests sent out. These values were then
averaged per vendor. Note that we are only able to distinguish between vendors (as will be
described in Section 5.3), and not between operating systems. While Apple and Blackberry
devices will almost certainly be running respectively iOS and Blackberry OS2, devices by
other vendors may be running Android, Windows Phone or any of the other vendor-specific
alternatives like Symbian (Nokia) or Bada (Samsung).

Note that the active scanning mechanism is still used when the smartphone is already con-
nected to a network, either to find other access points with a better signal strength than the
connected network, or to improve network performance when handoff happens between dif-
ferent access points [Lindqvist et al., 2009]. Smartphones also use probe requests to find
unknown networks. In this case, a broadcast probe request is sent. This type of probe re-
quest does not contain an SSID, and invites all access points in range to respond with a probe
response containing the network identifier of the access point’s network. These broadcast
probe requests can be considered as a device-initiated alternative to the beacons that are used
in the passive scanning method. As a last remark, probe requests can also contain additional
information in the form of Information Elements (IEs). We will discuss these in more detail

2At the time this experiment was performed, Research In Motion (the company behind Blackberry devices) did
not yet offer any Android-powered smartphones.
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Figure 2.2: Connecting to a network: authentication and association.

in Chapter 4, but will note for now that major operating systems are currently in the process
of phasing out these IEs in probe requests [Hogben, 2017].

2.3.2 Connecting to a network

Once a suitable network has been found, the mobile device (the client for this network) con-
nects to it. This connection happens in two stages: an authentication and an association stage.
The complete process is displayed in Figure 2.2.
The authentication stage allows devices to prove that they are authorized to connect to the
network. If shared authentication is used by the wireless network, this stage involves the
access point sending a challenge text to the client, which is then encrypted by the client to
prove that it knows the key that is required to connect to the network. In modern networks, or
networks that do not use authentication, shared authentication is not used3, and the authenti-
cation process is deferred to a later stage. Instead, the network will use open authentication,
exchanging only two authentication messages between the client and the access point.
In the association stage, the client sends an association request to the access point, informing
it of its wireless capabilities4 and its supported data rates and encryption protocols. The
access point then responds with an association response, providing its capabilities to the
client. Note that, although a client can execute the authorization stage with different access
points at the same time (putting it in a pre-associated state), it can only be associated with
one access point.

2.4 The WiFiPi detection mechanism
In this section, we lay out the structure of the mechanism used for tracking smartphone own-
ers. Our system consists of a number of detectors, placed at different locations, with the

3The Wireless Equivalent Privacy (WEP) protocol, which is the only protocol that uses shared authentication, has
been proven to have major security weaknesses, and its use has been discouraged [Fluhrer et al., 2001; Tews et al.,
2007]. Modern wireless authentication protocols, such as the WPA2 industry standard, defer their authentication to
a later stage.

4As noted in the previous section, we will provide some examples of these capabilities in Chapter 4.
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aim of covering the entire (event) area. This allows for detecting smartphone users without
their active cooperation. We first describe which elements of the 802.11 standard enable us
to detect devices on a single location, and continue with an overview of how we use these
detection techniques to track a device across different locations.

2.4.1 Detecting a device

In order to be able to detect a particular device that enters a detector’s range, the detector
needs to scan the ether for packets that have the following characteristics:

• In order to be able to uniquely identify a device, the captured packets should contain
the hardware (MAC) address of the device’s Wi-Fi interface.

• To make sure that all devices in range are detected, the packets must be sent out regu-
larly by the device.

In addition to the probe request and association request frames that were described in the
previous section, our system also detects reassociation request frames. A reassociation Re-
quest is sent when a Wi-Fi device wants to connect to another access point on the same
network. This is the case, for example, when the Wi-Fi device is roaming and has detected
an access point with a stronger signal serving the same network. Reassociation requests can
even be triggered by any station present on the network. Indeed, by sending out a disassoci-
ation frame, a station is able to request all associated clients to disconnect from the network,
effectively forcing them to reassociate afterwards. Moreover, disassociation frames can be
easily forged by a third party [He and Mitchell, 2005], causing every connected device to
reassociate.
None of these three types of packets are sent out continuously. We define a detection round
to be the minimum time interval for which we can be reasonably sure that a device sends out
at least one of these three types of packets. Based on our results in Section 2.3, and based
on specific lab tests in which we singled out devices, the ideal duration of a detection round
was empirically determined to be 130 seconds: each of the tested Wi-Fi devices (including
multiple Android devices, notebooks, an iPhone, and an iPad) sends out a probe request at
least once every two minutes, regardless of whether it was connected to a wireless network,
and regardless of whether it had been in use.
We refrain from using a mechanism which analyzes every possible type of 802.11 packet
because capturing and processing all packets would induce a great computational strain on
the detectors, while adding little benefit. Indeed, processing every large data packet at the
user space level instead of dropping it at the level of the network interface could very easily
overload the low-cost, low-power detectors. Furthermore, to ensure completely transparent
and non-obtrusive operation, our mechanism does not use disassociation frames to force re-
association of devices. If it is not required that the detectors operate stealthily, disassociation
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frames can be used to force devices to reconnect to networks, essentially eliciting an associa-
tion or reassociation request from the device (causing it to be easily detected). We published
a separate paper (not part of this dissertation) that discusses other methods for instigating
transmissions from mobile devices [Robyns et al., 2017].
Channel hopping techniques could be used to capture packets on all different 802.11 chan-
nels. While channel hopping would allow a detector to detect (re)association requests on
all different channels, the fact that the radio is tuned into a single frequency band for only
a short period at a time has a negative impact on the number of complete probe requests
detected (probe requests are sent on all channels). Empirical tests have shown that the ad-
vantages of channel hopping do not outweigh its cost (i.e. fewer devices are detected in total
when using channel hopping); it is therefore not used in the proposed solution.

2.4.2 Tracking the location of a device

Using the device detection method described above, a system which tracks the movement of
smartphone users can be created by dispersing multiple detectors over the coverage area. The
location of a specific device – and thus, its user – can then be determined by keeping track
of the different times at which each detector detected a packet originating from the device’s
MAC address.
An optimal tracking setup considers the placement of the detectors as well as the range of the
antennas to cover an area that is as large as possible. The latter can be tuned by opting for
directional (beam-type) or omni-directional antennas with a specific gain factor. Detection
ranges of individual detectors are allowed to overlap: both detectors could then be used to
establish a more precise location of the detected device.
It is a requirement that the clocks on the different detectors are at least loosely synchronized,
in order to be able to correlate data from the detectors afterwards. Alternatively, the detectors
could have their logging information sent to a server immediately. The server could then be
held responsible for correctly synchronizing the data from different detectors.
By correlating data from different detectors over time, a path can be established for every
visitor. By taking into account physical properties of the tracked area, such as blocked paths
and distance between detectors, more granular paths can be inferred. Moreover, in case of
only one entrance and/or exit, it can be determined when a visitor enters or leaves the tracked
area. We will use similar techniques in Section 3.3.2, when we will be using data gathered
by tracking festival visitors to simulate visitor movement patterns.
Additionally, to further increase location determination precision, the RSSI value – which
indicates the received signal strength for a received 802.11 packet – could in theory be used.
From this value, an estimation could be made on the distance between the detector and the
device sending out the packet. However, empirical tests have shown that the RSSI value is of
little use in crowded environments containing a high amount of electronic devices and people
due to severe fluctuations and noise in the data sets. Because of these environmental factors,
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the RSSI value is currently not used in the detection mechanism. Rather, the overlapping
range of the individual detectors provides a similar, but more consistent result. We use this to
provide an estimate on the location of a tracked device.

2.5 Implementation

The detection mechanism as described above was implemented on a Raspberry Pi computer.
The Raspberry Pi was the hardware of choice because of its low power requirements (3.5W),
its small size, and its very low cost: a Raspberry Pi cost under US$35 at the time of our
experiments (in 2012), while a current model Raspberry Pi Zero (released in 2015) can be
bought for as low as US$5. A USB hub was attached to the Raspberry Pi for power and
expansion, and a Wi-Fi dongle supporting monitor mode was used for capturing packets. An
external antenna was attached to the Wi-Fi dongle to increase the detection radius. Either
a cell phone or an ethernet cable was used for network communication, depending on the
facilities at the tracking site.5 Lastly, an LED was connected to the Raspberry Pi’s GPIO
pins to provide a status indicator, displaying whether or not the detector was a) scanning, b)
connected, and c) aware of the correct local time. The result can be seen in Figure 2.3.
Since Raspberry Pi’s do not have a real-time clock (RTC), the time for the Raspberry Pi is
reset at boot time. For providing the Raspberry Pi with the correct time, we used ntp when
a network connection was available. For situations in which no network connection was
available, we created a custom-made Android application that could be installed on our own
smartphones for informing the detectors in range about the current time. As we described in
Section 2.4.1, we limit the detectors to process only probe requests for efficiency purposes.
Because of this, the Android app (ab)uses the probe request mechanism to transmit this infor-
mation to the detectors. It does this by using Android’s WifiManager to temporarily create
a Wi-Fi network with a specific SSID containing an identification string, as well as the cur-
rent time. This causes the Android phone to broadcast a probe request with this information,
which can then be picked up by our detectors.
The Raspberry Pi was running Raspbian, a Debian-based GNU/Linux distribution specifically
tailored for use with the Raspberry Pi. The detection software was implemented in Python,
making use of the scapy packet capturing and manipulation library [Biondi, 2005]. This
library was chosen because it allows for filtering of packets at the kernel driver level by
making use of the Berkeley Packet Filter (bpf), while still allowing for easy interaction with
captured packets at the user space level. This combination ensures that the scanner software
is as lightweight and speedy as possible, while still being able to extract useful information
from packets on-line, at the scanner itself. This is important because the low-cost Raspberry
Pi devices have both limited processing power and limited storage speeds, which requires

5Note that a network connection is not required for the detector to function correctly. A network connection
was used to display a real-time overview of the gathered data and to provide a dashboard to the organization of the
festival.
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Figure 2.3: The Wi-Fi detector, consisting of: (a) a Raspberry Pi, (b) a Wi-Fi dongle, (c) an
external long-range antenna, (d) a USB hub, (e) a Nokia N78 phone, and (f) a heartbeat LED.

a scanner implementation to write as little data as possible, while doing as little processing
work as possible. Because of our optimizations, the detectors are able to process more than
4 000 detected Wi-Fi nodes per detection round in real time.
A list of detected devices was sent to a central server after every detection round in order
to both provide a failsafe logging mechanism and to be able to gather statistics in real time.
These real-time statistics include information such as the crowd density at different detectors,
information about visitors’ devices (manufacturer, broadcasted SSIDs), and spatio-temporal
information about the visitors. An example of the dashboard displaying part of this informa-
tion can be found in Figure 2.4.

2.6 Experiments

To investigate the feasibility of using the WiFiPi system at various types mass events, we
perform experiments in different settings. We do this by looking at the number of devices that
the system is able to consistently track, as well as the number of different data points we can
gather per device to generate a movement path that is consistent with the actual movements
of the device’s user.
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Figure 2.4: The dashboard showing information from the second scenario (university campus).
Left: a heatmap showing the density around the different detectors; right: the MAC addresses of
the currently detected devices (blurred out), together with the device manufacturers; bottom: a
timeline showing the number of detected devices per detector over time.

Table 2.2: Detection statistics for three experiments using the WiFiPi system.

Pukkelpop 2012 University campus Pukkelpop 2013
Detection period 3 days 3 months 3 days

Visitors 100 000 3 200 (daily) 85 000
Detected devices 29 296 16 383.4 (daily) 40 815

Detection rate 29.3% 40% 45.7%
Detections per device 10.5 272.1 149.2

At the time of the study, we performed two experiments using the detector software. The first
experiment consisted of placing the detectors at a three-day international music festival. For
the second experiment, detectors were placed at the university campus, tracking visitors for
over three months.

One year later (after publication of this work [Bonné et al., 2013b]), we performed the same
experiment using an upgraded version of our detector software and hardware, at the next
edition of the music festival. We added the results for this study in Section 2.6.3.

A summary of the detection statistics for all three experiments is available in Table 2.2.
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2.6.1 Pukkelpop 2012

Pukkelpop is a Belgian music festival attracting 100 000 visitors6 every year. The 2012 edi-
tion spanned three days, from August 16th to August 18th. During these days, fifteen de-
tectors were placed at strategic locations, ranging from the 8 different stages to important
passageways. Three detectors contained a cell phone for real-time monitoring. The total area
of coverage was about 400m by 500m.
Combining the data from all fifteen detectors, a total of 137 899 unique devices (MAC ad-
dresses) were detected. These detections also include some devices not belonging to festival
visitors. For example, some detections might have resulted from devices in passing cars or
from devices that are part of the fixed infrastructure. For this reason, we included in the final
dataset only those devices which were detected in at least two different locations, at different
moments in time. Filtering out the devices conforming to this requirement, we find a total of
29 296 detected devices, giving us a relatively good estimate of the number of people carry-
ing a Wi-Fi-enabled device at the festival (29.3%). The 29 296 devices account for a total of
307 256 data points, spread out over the three days of the festival.
It must be noted that the previous numbers establish a lower bound, not only because some
Wi-Fi enabled devices might have had their Wi-Fi turned off for the duration of our exper-
iments, or because it is expected that smartphone usage will increase over time, but also
because technical difficulties occurred during the first experiment. Indeed, during this ex-
periment, power failures were common, and both the detector software and the Raspberry Pi
operating system still suffered from childhood diseases. These problems caused the detectors
to sometimes malfunction, hindering them from detecting some devices. Another reason that
these numbers establish a lower bound is our requirement that devices should be detected at
at least two different locations. Because of this, rather stationary visitors are not part of the
results.
Together with our own Wi-Fi tracking setup, we also deployed Versichele et al.’s Bluetooth
tracking setup [Versichele et al., 2012]. As we will explain in Chapter 3, their method pro-
vided a coverage rate of approximately 10% of festival visitors, already being surpassed by
our own method by a factor of 3 in 2012.

2.6.2 University campus

To demonstrate the versatility of the system, detectors were also placed at the Diepenbeek
campus of Hasselt University (Universiteit Hasselt). Besides being an indoor location, this
scenario also differed from the one above in the fact that more long term monitoring (3
months+) was done and because the coverage area was smaller with more overlap between
detectors to increase accuracy. The Diepenbeek campus building of Hasselt University typi-
cally has around 3 200 daily visitors, consisting of students, staff and other guests.

6The Pukkelpop 2012 festival attracted 100 000 unique visitors over the course of three days. This number was
provided to us by the Pukkelpop organization.
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Figure 2.5: The second version of the Wi-Fi detector, installed at Pukkelpop 2013, also containing
an LCD display.

For this experiment, four detectors, all of them provided with a network connection, were
placed both at the Diepenbeek campus building and at the Expertise Centre for Digital Media
(EDM, Hasselt University’s multimedia research center). Two of the detectors were placed
relatively close to each other. This way, it was possible to cross-check data from those detec-
tors, allowing us to verify that devices were either tracked by both detectors or not detected
at all. Over a period of three months, 16 486 devices passed within the range of at least one
detector. In total, the devices were detected a total number of 4 486 310 times.
On average, 1 383.4 unique devices are detected at the main campus per working day. As-
suming that every visitor carries exactly one switched-on Wi-Fi enabled device7, it can be
concluded that the detectors provide a coverage rate of around 40% for this scenario.

2.6.3 Pukkelpop 2013 and WiFiPi 2.0

In our music festival experiment from 2012, we collected information from smartphones of
over 29 000 festival visitors (about 29.3%). To see if this number would increase over time,
we repeated the experiment in 2013, with an updated version of both the detector software

7Note that a visitor may be carrying more than one switched on Wi-Fi enabled device (notebook, smartphone,
tablet), or that he/she may not be carrying a smartphone at all.
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Figure 2.6: The updated version of the dashboard, providing a.o. real-time information about
average travel times between the different stages for festival visitors.

and hardware. Among improvements in detection performance, the newer version of our
detector (see Figure 2.5) also included an LCD display, providing us with basic information
such as the network connection information, the detector’s wall clock time and the number
of detected devices, allowing us to easily monitor those detectors in real time even when an
internet connection was not available.

Apart from the detectors, the dashboard was also updated (see Figure 2.6) to provide addi-
tional information. Among others, it provided the festival organization with real-time infor-
mation about the travel times between different stages, an updated real-time heatmap and
different spatio-temporal visualisations of the distribution of visitors between different stages
and different points in time.

This repeated experiment provided us with smartphone detections for 38 828 festival visitors
(about 48% of the amount of tickets sold). Based on anonymized data we could again infer
which music stages a person visited at what time. We were able to cluster visitors based
on their musical preferences, and we generated association rules that could be used to infer
which artists a visitor was most likely to visit based on other attended performances. An ex-
ample of this is shown in Figure 2.7, where association rules for the band “BadBadNotGood”
are shown. From this figure, we can see that a visitor in our dataset that attended BadBad-
NotGood had a chance of 14.6% of also attending the band TNGHT, and that approximately
64 visitors attended both bands. “interestingness” is used as a term to describe the statistical
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Figure 2.7: Association rules generated for Pukkelpop 2013, showing the correlation between vis-
itors of different artists. This screenshot shows association rules for the band “BadBadNotGood”
(which played at the “Club” stage).

concept of lift, and is calculated as follows:

lift(ArtistA⇒ ArtistB) =
P(ArtistB | ArtistA)

P(ArtistB)

The intuition behind showing the statistical lift as an “interestingness” metric to the festival
organizers is that it scales the probability of a specific rule to the probability that a random
festival visitor would visit the artists in the second column. This gives rules with less popular
artists in the second column a higher “interestingness” value. Intuitively, artists that were
more likely to have been visited by any festival visitors (as opposed to only the ones who
visited the artists in the first column) correspond to a less interesting case than artists who
have been visited by only a small part of overall festival attendees.
The example of BadBadNotGood attendees also attending TNGHT given above in particular
was interesting to festival organizers, as BadBadNotGood and TNGHT are very different
bands: whereas BadBadNotGood plays jazz that is influenced by hip hop, TNGHT is known
for its electronic trap music. What caused these bands to be visited by the same audience
is that BadBadNotGood, programmed early on in the day, played a cover version of one of
TNGHT’s songs, encouraging the audience to attend the concert of the latter later that day.
In our repeated experiment, we did not limit the WiFiPi system to collect only MAC ad-
dresses, but also used it to collect lists of the networks that users had connected to in the
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past (as explained in Section 2.3). This led to some interesting results: of the 38 828 devices
that we detected during this event, 23 103 devices (59.50%) sent out at least one network
identifier (SSID). Moreover, 6 609 of these devices (28.61%) broadcasted at least one net-
work that was not broadcasted by any of the other devices, and more than 50% of the devices
contained an SSID that was shared among at most 50 other devices. This means nearly a
quarter of the people carrying a smartphone could be uniquely identified only by the list of
networks in their phone, and that clustering people by workplace or home based on the gath-
ered data is possible. We were able to achieve these results with a simple and low cost setup,
which underscores the fact that anyone with limited resources could collect similar data at
any particular location. In Chapter 5, we will present a system (called SASQUATCH) that
uses this information in an experiment that aims to both assess and increase user awareness
about privacy issues in wireless networks.
As we will see in Chapter 3, the detection rates that the WiFiPi system is able to achieve are
sufficient for building realistic movement paths of visitors at mass events, both in the context
of a music festival as in the more low-traffic context of a university campus.

2.7 Applications
Using low-cost hardware for tracking people offers a wide variety of applications, of which
we give some examples in this section. We emphasize that this is only a small subset of many
possible use cases.

2.7.1 Real-time crowd management and marketing

An interesting application for organizers of mass events is to use the real-time gathered data
for crowd control. Similar to the dashboard (pictured in Figures 2.4, 2.6 and 2.7) that was
used for visualizing crowd data during our experiments in real time, one could visualize
the real-time data in a way that shows the flows of people moving, and provides additional
information on crowd density compared to the maximum capacity in a particular location.
Moreover, a visualisation of real-time data could prove to be vital in an evacuation scenario
where the goal is to get people to move to – or away from – a certain location as fast as
possible.
Furthermore, the data can be used after-the-fact to gather some interesting statistics about
visitor behavior at music festivals, for example:

• Which artists or stages are most popular and which artists attract a similar audience?

• Which (unforeseen) crowd movements happen on the terrain over the duration of the
festival (due to unplanned events or scheduling issues between the stages)?

• How stationary are visitors? How much time do they actually spend on the festival
site?
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As an example, we provided some analysis on the first point (correlating different artists
based on their visitors, as described in Section 2.6.3), and showed the results to the festival
organization. They confirmed the most important trends, and indicated to be interested in a
commercial system providing this information.
This gathering of statistics does not only apply to music festivals, but also to places like
shopping centers. There, the data could be used, for example, to monitor the shops in which
customers spend most of their time, or to oversee queueing times at the cash registers.
After publication of this work [Bonné et al., 2013b], different marketing agencies and cities
like London and New York have started adopting similar techniques for tracking their vis-
itors and inhabitants. One example is marketing agency “Renew”, which used trash cans
in London to track people via their smartphones’ Wi-Fi signals. Another example is the
company “Navizon” (now Accuware), specializing in tracking devices through a variety of
signals [Accuware, 2017].

2.7.2 Mobility models for simulations

Opportunistic, multi-hop networks deal with using ad hoc communication to provide network
connectivity among different devices in a local area. A possible application for this technol-
ogy is a mass event, where conventional cellular networks are likely to become overloaded
due to the high amount of visitors.
In simulating opportunistic networks, it is essential that the simulation runs are performed
using realistic movement patterns [Aschenbruck et al., 2011; Camp et al., 2002]. Because
of this, real mobility data of visitors at a mass event can provide invaluable information for
creating a realistic simulation. The dataset acquired at the Pukkelpop festival was converted
to two different types of mobility traces: one that could be used by the ONE opportunistic
network simulator [Keränen et al., 2009], and one that could be directly used in simulations
run by either ns-2 or ns-3 [Henderson et al., 2006].
In Section 3, we will discuss this specific application of involuntary tracking, using data
gathered in a similar fashion to optimize routing protocols that can be used for opportunistic
communication between music festival visitors.

2.7.3 Ubiquitous computing

In the domain of Ubiquitous Computing, a low-cost Wi-Fi detector could be used to infer
which people are currently present within a certain room, and to tune the atmosphere ac-
cordingly. A visitor to a room can have preferences for certain types of lighting or genres
of music. Furthermore, user interfaces can be tweaked to accommodate a user’s preferences,
or the user could automatically be logged in to certain services. It must be noted that the
maximum detection interval of 130 seconds may be too high in such a scenario. In this case,
techniques such as disassociation requests (see Section 2.4.1 and [Robyns et al., 2017]) could
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be used to speed up the detection of a device as a wireless infrastructure using access points
is likely to be present.
A Wi-Fi detector could also be used to save energy in rooms where no one is present, possibly
enhancing other detection methods such as motion sensors, audio detection or security cam-
eras. Assuming that every visitor carries a smartphone, if it is detected that all devices that
were previously present have now left the room, lights and other appliances could be turned
off automatically. This could increase the accuracy of detection especially when attendees
are mostly static.
Lastly, as described by Rose and Welsh [Rose and Welsh, 2010], information from probe
requests can be used to infer past location data from users, allowing for user profiling. This
user profiling could aid, for example, in automatic language selection, choosing the user’s
language based on the locations over the world he/she has visited most often.

2.8 Privacy implications
Clearly, tracking people via their smartphones brings about important privacy implications.
The most obvious one is that when the MAC address of a person’s smartphone is known, it is
easy to reconstruct the complete path this person has traveled.
Because MAC address information needs to be shared among different detectors for tracking
purposes, it is not possible to anonymize our dataset simply by associating a unique identifier
to every MAC address in each individual detector.
A naive solution might consist of creating a one-way hash of every MAC, in order to obfuscate
the MAC addresses, while still making sure that the identifier would remain the same over
different detectors. However, it would then still be possible to track a certain MAC address
by calculating its one-way hash. Thus, care must be taken that the data is anonymized in
some other way (e.g. by associating a random number with every MAC address) after it has
been combined from all individual detectors.
However, even if the MAC address of a person’s smartphone is not known, it is still possible
to derive information from the captured Wi-Fi probe requests alone. For example:

• The list of known SSIDs is available as part of the probe request. From this list we can
derive other networks the user has connected to, which may include e.g. the SSID of
the home network, the SSID of places visited, or even the user’s personal name (as part
of the SSID of the user’s home network or mobile hotspot).

• The manufacturer of a person’s smartphone, which can be derived from the first part
of a smartphone’s MAC address, can be used to identify that person. To illustrate how,
consider the scenario where the visiting times for a specific person at certain places are
known. The list of devices detected at that time can then be reduced to a list of devices
matching that person’s smartphone manufacturer, which makes it easy to derive the
MAC address of the smartphone.
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Indeed, we will use both of these points of information in our experiments to increase user
awareness in Chapter 5.
Moreover, de-anonymization of the dataset is possible when some other information is known.
Indeed, relationship graphs in social networks can be compared to devices traveling together
amongst different detectors in order to infer real-world identities from the mobility dataset.
This is analogous to previous work done by Narayanan et al., wherein original identities are
derived from anonymized social network graphs [Narayanan and Shmatikov, 2009]. More-
over, Bilogrevic et al. showed that an adversary having access to a network of wireless
sniffing stations (similar to our detectors) is able to reconstruct social communities based on
gathered MAC addresses of participants’ mobile devices [Bilogrevic et al., 2012].
As in the work of Rose and Welsh [Rose and Welsh, 2010], the list of SSID’s collected from
a smartphone can also be used to infer the coordinates of past locations of a smartphone user.
As we will discuss in more detail in Part II (more specifically, in Sections 5.2 and 5.3.1),
this can be achieved by using the list of SSID’s as an input when querying a “wardriving
database” such as WiGLE [WiGLE.net, 2016], which contains a list of access points and
their real-world locations.

2.9 Conclusion

We have shown that tracking of visitors at mass events can be achieved at a very low cost and
– more importantly – unobtrusively and without requiring active cooperation. We achieve
this by implementing the scanning software in a way that limits both processing and disk
I/O, allowing for detection of up to 4 000 devices per 130 seconds (a ‘detection round’). The
proposed method can easily be tailored to suit various contexts of use, demonstrated by the
two scenarios presented. A number of possible applications have been discussed, along with
some privacy implications that should be kept in mind when using the proposed solution.
As we noted in Section 2.7, marketing agencies and public institutions have already started
adopting similar techniques after the publication of this work [Bonné et al., 2013b].
The privacy implications that this technique entails, combined with the very low cost and
ease with which this tracking can be peformed, show the large risk that any third party can
abuse this system for nefarious purposes. Indeed, even if marketing agencies and public in-
stitutions comply with ethical and legal standards, nothing prevents a malicious actor from
using the same techniques to gather information or mount attacks. This ties into research
question RQ1, showing that the default modus operandi of wireless network already entails
important privacy and security issues. We will show how these vulnerabilities can be ex-
ploited in more detail in Chapter 5.

The data acquired at the Pukkelpop festival is part of a project in which we aimed to develop
a smartphone application which allows opportunistic (ad hoc) communication at mass events
such as music festivals as an add-on to infrastructure-based networks. The gathered data
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can be used in network simulation experiments, in which the optimal opportunistic routing
protocol for use at mass events is determined. We will discuss how these kinds of simulations
work in the next chapter.
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3.1 Introduction

In the previous chapter, we showed how smartphone users can be surreptitiously tracked by
third parties through Wi-Fi signals that are sent out by their smartphones. In this chapter,
we show a legitimate use case for data that is gathered in this fashion. Specifically, we
show that mobility data gathered by an opportunistic tracking system at a mass event can
be used in simulations that try to emulate these types of events. We again use the “music
festival” mass event use case as an example, using the gathered mobility data to optimize and
adapt an opportunistic routing protocol that could be used in applications providing ad-hoc
communications to festival visitors.
To see why ad-hoc communications at music festivals are an interesting use case for mobility
simulations, consider the fact that the existing cellular network infrastructure at mass events
is often faced with very large amounts of data. This can result in network outage or serious
delays, especially in places where many people gather in a small geographical area. Thus, it
would benefit festival attendees if they could exchange small messages (e.g. SMS or Whats-
App) through ad hoc communication at these events, reducing the load and freeing capacity
on traditional cellular networks. For this, opportunistic network technology can be leveraged
to directly deliver data between devices.
Crowds at mass events follow specific movement patterns, the properties of which can be
exploited to better route information between users. In literature, several routing protocols
have been proposed that can be used to implement such an ad hoc messaging application
on mobile devices. All of these protocols require different parameters to be tuned. These
choices range from how long one should wait for the arrival of a message to the number of
messages that should be passed on to a neighboring device. Simulation is a common tool
in research on computer networks, especially in Mobile Ad Hoc Network (MANET) and
Delay Tolerant Network (DTN) research. In this chapter, we use mobility data which was
captured using a technique similar to the one described in the previous chapter to perform
simulations of these various routing protocols using the Opportunistic Network Environment
(ONE) Simulator [Keränen and Ott, 2007], and present our results. Furthermore, by analysing
the data, a suggestion for best-suited protocols will be made for an actual implementation.

3.2 Background and Related Work

In the last decade of DTN research the main focus has been on the development of effi-
cient routing protocols. Several surveys can be found in literature [Zhang, 2006; Khabbaz
et al., 2012]. A commonly used tool to evaluate these protocols is simulation. There are
several available network simulators, for example ns-2 (and its successor ns-3) [Henderson
et al., 2006] or OMNeT++ [Varga and Hornig, 2008], each with its own benefits and draw-
backs. The Opportunistic Networking Environment (ONE) simulator presented by Keränen
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and Ott [Keränen and Ott, 2007], is specifically designed to facilitate DTN related simulations
and is used and evaluated in several publications.
Although simulations are a commonplace tool in research, there are typical mistakes and
misconceptions. Andel and Yasinsac [Andel and Yasinsac, 2006] point out several of these
in the reporting of simulation studies. More specifically, Grasic and Lindgren [Grasic and
Lindgren, 2012] have surveyed a number of DTN related papers published in the last decade
and describe several issues that should be avoided in future research, with the emphasis on
using the correct node density and mobility models for a given scenario. This shows the
benefit of using real mobility data.
Aschenbruck et al. [Aschenbruck et al., 2011] provide an overview of the available synthetic
and trace-based mobility models that can be used in simulations and emphasize the need for
more realistic traces and mobility models. The CRAWDAD database [Yeo et al., 2006a] is a
well known repository in the domain and contains diverse wireless trace data sets which can
be used to extract mobility information. Numerous publications using those traces to improve
synthetic models can be found, for example Lee et al. [Lee et al., 2009] who developed a
movement model based on GPS traces. Other publications use the aforementioned traces to
evaluate a protocol, like the work of Radenkovic and Grundy [Radenkovic and Grundy, 2011]
wherein several traces are used to evaluate a proposed routing strategy.
We have used a similar method to the one presented in the previous chapter [Versichele et al.,
2012] to gather a large set of mobility traces at the same international music festival, and
have used this data to simulate and investigate existing DTN protocols in a mass event setting
without the need to depend on synthetic models. The difference between the method laid out
in the previous chapter and the one presented by Versichele et al. [Versichele et al., 2012]
is that whereas our method uses Wi-Fi signals to track visitors, their method tracks devices
that are in the Bluetooth discoverable state. We compare both methods in Section 2.2. Both
methods were deployed at the same time, with our own method as a proof-of-concept, and
their method for the actual data gathering. Vukadinovic and Mangold [Vukadinovic and
Mangold, 2011] performed an analogous experiment in an entertainment park where GPS
traces were collected using mobile devices that were randomly distributed to visitors over
five days. However, they did not focus on different routing protocols using these traces.

3.3 Mobility

Simulating the movement of crowds at mass events in a realistic manner relies on the ability
to precisely tune the simulation parameters to the context of the event. Traditionally, syn-
thetic movement models – such as the random waypoint model or the city section model –
have been used for this purpose [Camp et al., 2002]. Recent studies have shown that using
synthetic movement models provides only a limited approximation of real trajectories, and
that more realistic simulations can be achieved by using movement data gathered by tracking
people within the desired simulation context [Aschenbruck et al., 2011]. A problem often en-
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countered with methods for gathering this type of information is that only a relatively small
subset of the population can be tracked at the same time [Versichele et al., 2012].
The chosen mobility model has a profound impact on the realism and thus outcome of a
simulation. As Grasic and Lindgren [Grasic and Lindgren, 2012] have pointed out, many
protocols in the literature are tested and evaluated in unrealistic or irrelevant scenarios. This
chapter focuses on a specific real-world scenario and the development of applications for it.

3.3.1 Collecting Data

Despite projects like CRAWDAD, the public availability of wireless traces is rather limited.
For this study, a subsample of festival attendees was tracked using the method of Versichele
et al [Versichele et al., 2012].1 By deploying 15 Bluetooth scanners at strategic locations over
the festival terrain, proximity-based trajectories of over 10 000 unique devices were registered
during the same festival (Pukkelpop 2012) as where our setup from the previous chapter was
deployed. The unique hardware addresses (MAC) of Bluetooth chips make it possible to
detect and track the movement of a device when combining data from several detectors in
much the same way as the Wi-Fi technique. The hardware address can also be used to couple
a detected device to a node that is used in a simulation environment. The resulting data
contains timestamps of detected devices collected at certain strategically chosen locations on
the terrain, such as stages and passageways, while trying to cover as much of the terrain as
possible.

3.3.2 Calculating movement paths

As the collected data only includes discrete detection points in time, we need a way to gen-
erate movement paths from this data. We do this by letting a simulated node travel from a
certain discrete detection location corresponding to a real node and time to the location and
time of the next detection of that node. The range of the detectors, depending on the sensor
used, is approximately 20-30 meters. Nodes in the simulation are therefore placed at or move
towards a random position around the sensor locations in a radius of 20 meters.
If the nodes would simply travel in straight lines from one detector to another, certain obsta-
cles that were present at the festival area would be ignored. To improve realism, a rudimen-
tary shortest path finding algorithm was used to let nodes travel a more realistic path from
one point to the next: paths are only created along passageways, since fences and tents on the
terrain can not be crossed. To achieve this, additional points were added along paths in order
to avoid these obstacles.
In between detections it is possible that certain devices remain undetected for a while. This
does not necessarily mean these users left the festival area or turned off their devices: they
could simply be out of range of all detectors. The problem is that there is no other information

1See Sections 3.2 and 2.2 for a comparison between our method from the previous chapter and the method by
Versichele et al.
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Figure 3.1: Number of detectors encountered by each of the top 1 000 nodes for a single festival
day.

about the actual status of the device. The chosen solution to this problem is to disable the
node in the simulator after a certain time of not being detected (we will explain how in
Section 3.4.1). This time was empirically chosen to be 15 minutes: most of the festival area
is covered and it should take less than 15 minutes to move between any two detectors. The
node will remain disabled until a detection at a later timestamp is encountered in the data.
The Bluetooth detectors discovered an average of 5 300 unique devices per festival day. This
number also includes devices that are only detected a few times (e.g. a passer-by) or are
originating from organisational equipment which is static. A set of 1 000 nodes with the
best paths (i.e. paths with the most detection points) were selected for our simulations. We
perform the simulations with subsets of 50, 100, 250, 500 and 1 000 nodes, selected for 12
hours of a single festival day. This gives us an average of 202.18 detections per node, with an
average of 6.40 (out of a maximum of 15) detectors visited for each node. The selected nodes
moved from one detector to a different detector on the festival area 38.66 times on average
(median: 32). A full distribution of encountered detectors, and number of movements per
node is available in Figures 3.1 and 3.2, respectively.

3.4 Simulations

The main goal of all evaluated protocols is to enable communication between arbitrary de-
vices in an ad hoc manner. This means that messages must be relayed by other devices to
reach destinations that are not in transmission range. This section briefly explains the settings
that were used for the simulations, followed by a description of the evaluated protocols.
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Figure 3.2: Number of times a node moved from one detector to a different detector on the festival
area, for each of the top 1 000 nodes for a single festival day. The last bar represents devices with
numbers ranging from 200 to 527 movements between detectors.

3.4.1 Simulation Settings

The ONE simulator is a network simulator developed to evaluate network protocols in a
delay-tolerant environment. It is specifically designed to facilitate delay tolerant networking
(DTN) research by abstracting certain elements of typical DTN communication and offering
a number of tools for simulation. Visualization is one of these tools; Figure 3.3 shows a
screenshot of the visualization component while simulating moving nodes on the festival
area. Another tool enables researchers to import mobility data into the simulator. The source
code of this component had to be slightly altered so nodes could be disabled when no trace
data was available (as explained in section 3.3.2). Messages in the buffers of these disabled
nodes are kept there but do age; depending on the routing protocol, it is possible they are
dropped from the buffer due to aging as would be the case when devices have left the festival
site in a real-world scenario. Each simulation run covers a full festival day (12 hours).
The size of the festival area is circa 400m by 500m. For all nodes in the simulations a
communication range of ten meters was chosen using a Bluetooth interface with a transfer
rate of 2 Mbit/s. Although many wireless technologies have a much larger range in theory,
interference in a dense crowd and other obstacles often hinder communication over a large
distance. The ONE simulator does not take into account these interferences; a relatively small
transmission range is chosen to compensate for this deficiency, so the results are also relevant
for other wireless technologies (e.g. Wi-Fi) that can be used in a real-world application.
The messages in the simulations have a size of 100 kB and the buffers in each node have
a capacity of 10 MB. This is an estimation of the requirements of an application on a mo-
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Table 3.1: Simulation settings.

Simulation time One festival day (12 hours)
Simulation area size 400m x 500m

Transmission rate 2 Mbit/s
Transmission range 10m

Transmission protocol Bluetooth
Message rate 4 messages per hour, per node, on average
Message size 100 kB
Buffer size 10 MB

TTL 15 minutes

Figure 3.3: Simulation of a festival day: the nodes and their transmission ranges are visualized
by a circle, the background shows the festival area.

bile device for sending small text messages or pictures like in SMS/MMS. The size of the
messages is large enough to support additional security measures such as the use of public-
key cryptography. The buffer size is intentionally kept small (a maximum of 100 messages):
more messages lead to more processing and transmissions and thus more energy consump-
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tion. People who do not return home between festival days have to consider their energy
consumption since they often have no way of recharging their devices. This factor should be
taken into account when developing and testing routing protocols for scenarios like a festival
spanning several days.
Messages are generated by random active nodes in the festival area. A node is assumed to be
active when the simulator is certain of the node’s location, i.e. when there is a related detec-
tion in the real-world trace for that particular node. The destination is also a random node in
the festival area. Because nodes can become disabled, it is possible that the associated mes-
sages will disappear as well. This is not unrealistic since people may turn off their devices,
the application may be shut down or because batteries could be depleted in real life. Using
a random event generator in our simulations, every node sends an average of four messages
per hour in a simulated festival day.
The time-to-live (TTL) of the messages was set to 15 minutes. This is rather a long time
to mimic SMS-like behavior but it ensures that all protocols have a reasonable amount of
time to deliver a message. In an actual opportunistic mobile messaging application this TTL
should be further reduced since an acknowledgement system should inform the user whether
a sent message has arrived at its destination, and long waiting times for this feedback are
impractical. An overview of the simulation settings is given in Table 3.1.

3.4.2 Routing Protocols

Six routing protocols were tested in the simulations. Every protocol was run through five
iterations of simulation, each iteration simulating a full festival day of 12 hours, with the
results being averaged. In each of the five runs a different seed was used for the random num-
ber generator responsible for the time of creation, sender and destination of the messages.
The protocols used were Direct Delivery (DD), First Contact (FC), Epidemic (EP) [Vahdat
and Becker, 2000], Spray and Wait (SW and SWb) [Spyropoulos et al., 2005] and two ver-
sions of the Probabilistic Routing Protocol (PRoPHET): the original protocol (PR) [Lindgren
et al., 2003] and a slightly adjusted version PRoPHETv2 (PR2) [Grasic et al., 2011]. The
implementations of these protocols were made by the developers of the ONE simulator and
other contributors. The active community and diverse research contributions have checked
and optimized these implementations. Since the goal was to investigate general properties of
routing algorithms in a specific environment, the choice was made to use specifically these
thoroughly tested and reviewed protocols. A short description of each is provided below.
The first three protocols do not have parameters that can be tuned, so there is only one version
to be tested. DD delivers the message only directly to the destination, i.e. there is no relaying,
and messages are only delivered when the destination is a direct neighbor of the sender. In
FC only one copy of a message exists at a certain point in time: a message is relayed to the
first encountered node unless the message already traversed that node, and is then removed
from the message buffer of the previous hop. This happens until the destination is reached or
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the TTL is reached. The EP protocol replicates messages using a flooding approach so that
all messages are constantly being sent to all nodes that are in range.

In SW, a maximum of n copies of a message can exist in the network. These copies are
’sprayed’ towards encountered nodes, until only one copy remains at the sender. Two imple-
mentations of SW were used: binary (SWb) and non-binary (SW). In non-binary mode the
sender sprays only one copy of the message to each (different) encountered node. In binary
mode half of the available copies is passed on to an encountered node, which in turn does
the same with these received copies. This happens until only one copy is left. The remaining
copy then waits, in both binary and non-binary, to be delivered to the destination as soon as
it comes into range. Both the binary and non-binary versions were simulated with different
numbers of copies (n = 6,12,18,36,72,144), based on values proposed in the original work
and further empirically determined by preliminary simulations.

The PRoPHET protocols try to estimate the chance that a node can deliver the message to
another node, based on historical information, and spread messages based on this chance.
The transitivity property describes the probability by which a node can deliver a copy to the
destination recursively. For example, if node A wants to send a message to node D via B,
the transitivity property specifies the probability that B will encounter a node C which can
in turn deliver the copy to D. PR2 uses a slightly adjusted transitivity property and aging of
the delivery probabilities. More details can be found in the respective papers [Lindgren et al.,
2003; Grasic et al., 2011]. PR and PR2 ran with different values for the transitivity property
(β = 0.0,0.09,0.25,0.90) based on the proposed values in the original and on previous work.

3.5 Results and analysis

This section discusses the results and analysis of the simulations described in Section 3.4.
First, the proposed metrics are briefly described. The importance of these metrics is depen-
dent on the application scenario and will be detailed in the analysis that follows. Finally, the
most suitable protocols are suggested based on the simulations. The figures in this section
show the results of the simulation runs with 500 nodes.

3.5.1 Metrics

1. Delivery ratio: This metric represents the percentage of messages that were created and
effectively reached their destination.

2. Latency: The time it takes for a delivered message to reach its destination. An upper
bound on the time a message has to arrive at the destination may be needed in an
application to decide whether the message is lost or a resend may be beneficial.
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(d) Number of hops

Figure 3.4: Comparison between routing protocols based on the indicated metric.
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3. Overhead: The overhead is defined as #relayed−#delivered
#delivered . It provides an indication of the

overhead as transmissions of messages that could not reach their destination are also
included.

4. Number of hops: This number describes how many other nodes the message had to
pass through to reach its final destination. This metric is often omitted or forgotten in
the analysis or reporting of simulations but can indicate how challenging the evaluating
scenario was and how well the routing protocol utilizes the network resources [Grasic
and Lindgren, 2012].

3.5.2 Individual Protocol Examination

In all of the above protocols, and more in general in the simulator used, control messages
are not included in the overhead calculation. The nodes can retrieve certain information,
like the history of encountered nodes in the PRoPHET algorithms, without sending actual
messages. It is possible to abstract this kind of communication as is the case in the simulator,
for instance by assuming the lower layers handle this, but it should not be ignored in an
analysis as these messages require additional energy for processing and transmissions and
can even cause additional interference.
The results of the simulations are summarized in Figure 3.4. What immediately stands out is
the high delivery ratio of the Epidemic routing protocol. However, because of the flooding
nature of this protocol, there is a relatively large overhead. It is intuitively clear that when
more copies of the same message are sent, the chance of actually reaching the destination
increases. The low latency of EP in this figure shows that the underlying mobility trace with
500 nodes (and similarly the 1 000 trace) offers a beneficial environment for this protocol as
there is a lot of movement between the groups of people at the festival site and the crowd is
almost entirely interconnected.
Another part of the charts that warrants attention is the relatively large amount of hops of the
First Contact protocol. The high hop count is caused by the choice of a random neighbor to
relay the message, even if the destination is itself a neighbor of the sender. As can be seen
on the latency graph, FC also has a relatively low end-to-end latency. The reason for this
is that there is only a slight chance that the destination is reached, but if it is reached the
coincidentally chosen path will be relatively fast.
The Direct Delivery protocol is not applicable for use within a real-world ad hoc application,
since the point is to communicate with each other without being geographically close to each
other. It is however useful to check a borderline case of DTN protocols, namely where there
is no relaying at all. It is obvious that carrying messages for other nodes is necessary: the
delivery property of DD is the lowest of all results. This also means that the probability is
relatively small that two random nodes come in contact within 15 minutes (the chosen TTL)
in the used mobility trace.
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The Spray and Wait protocols try to reduce the amount of data in the network by imposing
a maximum number of copies of a certain message. It is again clear that when more copies
are allowed, the delivery ratio increases. Since the non-binary version spreads a message by
giving one copy to each encountered node until only a single copy remains at the sender,
the number of hops is always one (if the sender delivers the message) or two (if the contact
delivers it). In the binary version, the maximum number of hops increases with the number
of allowed copies because encountered nodes may receive more than one copy, and they can
subsequently spread all of these copies. As can be seen in the graphs, the delivery ratio is
relatively high while the overhead remains low. Increasing the number of allowed copies will
not endlessly improve these statistics: the overhead grows rapidly in the binary case and there
are not enough encounters for the non-binary case to keep delivering better results.
The PRoPHET algorithms use historical information to route messages. In simulations that
can be found in literature, there often is a warm-up period for history based protocols to
build up an initial understanding of the network. In our scenario this is not possible: the
simulation is in fact a whole festival day where visitors enter the terrain at a certain moment
and actually have no knowledge of the other nodes or their history. Though the delivery
ratios are relatively good, these protocols produce a large amount of overhead as can be seen
in the figures. While the first version of the PRoPHET protocol performs better in terms of
delivery as the β-parameter is increased, the second version responds inversely. Because the
results of PRoPHETv2 with β = 0.09,0.25,0.90 performed almost identically these results
were omitted from the figures.

3.5.3 Comparison

When performing simulations with less than 500 nodes it becomes clear that the SW protocols
are related to EP. Indeed, when enough copies of a message are allowed in SW (and especially
in the binary case), messages can spread to almost all nodes like in EP. When fewer nodes
are used in the simulation of the festival scenario, the crowd gets less connected and the
spreading of the messages will be slowed down. This results in a higher latency for EP that
is comparable to SW in the same setting, the latter with the advantage of requiring a limited
amount of copies.
By comparing the findings of Keränen and Ott [Keränen and Ott, 2007] to our results, it is
again clear that the underlying mobility models play a very important role. While the goal
of sending small messages in a DTN environment is the same, they state that disabling the
transitivity property (β= 0.0) in the PRoPHET protocol yields the best results in a map-based
and working day movement model, whereas the music festival mobility yields better results
(in terms of delivery) when this property is actually used (β = 0.09,0.25,0.90).
Del Duca Almeida et al. [Del Duca Almeida et al., 2012] compared MANET and DTN rout-
ing protocols in three scenarios using the ns-2 simulator. They observe that the examined
DTN protocols (Spray and Wait, Epidemic and PRoPHET) have almost the same end-to-end
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latency, using other mobility patterns with a relatively low amount of nodes. After investigat-
ing the power requirements, they report the expected increase of energy usage as protocols
send many copies of messages, as in Epidemic, or need a lot of control messages, like in
PRoPHET. They only tested the binary Spray and Wait protocol with n = 6 which has a much
lower energy consumption while having a similar delivery ratio in comparison with the Epi-
demic or PRoPHET protocols. These findings confirm our assumptions regarding the energy
requirements of the protocols.

3.5.4 Candidate Selection

To narrow down the candidate set, two representative scenarios are studied that stress different
metrics of the protocols in the results of the simulations. The first is an emergency scenario,
in which it is important that small messages reach their destination quickly and with a high
degree of reliability. In these conditions, power consumption and overhead are non-essential
factors to decide upon the ‘best choice’. To clarify the performance of the protocols in this
condition, Figure 3.5(a) plots these variables in an X Y fashion. Protocols with desirable
performance are ideally located in the lower right-hand quadrant of the chart. Outliers (e.g.
FC) are eliminated in these charts for reasons of clarity. In this condition EP is the obvious
candidate as it clearly outperforms the others.
A second scenario describes a energy-conscious condition, in which the delivery of messages
is less important, but in which users rather are focused on conserving their device’s power
source. This translates into the minimization of the overhead and optimization of the delivery
ratio metrics. Figure 3.5(b) depicts precisely these variables; candidate protocols are found
in the lower right-hand part of the chart.
Overall, based on our simulations using realistic node movement, we propose the Epidemic
and binary Spray-and-Wait protocol as promising candidates for use at mass events. The
main advantage of EP is the high delivery rate and low latency when the crowd is sufficiently
interconnected, although the overhead is relatively high. The SWb protocols show similarities
to the EP protocols yet limit the amount of copies in the network, thus lowering the overhead,
while performing similar to EP in smaller networks. Both protocols can be tuned according
to the specific context of use (e.g. the number of messages in the SWb case). Given the
fact that the routing protocol and its parameters are implemented entirely in software, such
a switch can easily be performed. Indeed, Spyropoulos et al. [Spyropoulos et al., 2005]
describe that the Spray and Wait protocol can be tuned online to achieve the desired QoS
requirements, providing a practical way for adapting the protocol to the current situation. The
EP protocol could analogously be tuned by e.g. adjusting the sending frequency depending on
the number of received messages. Furthermore, given the underlying mobility, the latency of
the delivered messages is lower as in more advanced protocols like PRoPHET while similar
or better delivery ratios are realized. Lastly, the amount of control messages needed for these
protocols is relatively low.
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(b) Energy-conscious condition

Figure 3.5: Scenario-based performance evaluation.
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3.6 Conclusion
In this chapter we have shown an application of collecting mobility data from smartphone
users at a mass event, showing how tracking technology can be used for good by third par-
ties, touching on the second part of research question RQ1. We used collected mobility data
to compare simulations of opportunistic routing protocols under realistic movement models.
We have used four metrics to analyse and describe properties of the routing protocols. By
highlighting and analyzing several important properties of the protocols, we have been able
to compare the protocols. Based on the results, the Epidemic and binary Spray-and-Wait pro-
tocols are proposed as most suitable candidates for use in festival scenarios as they perform
similar to more advanced protocols in terms of delivery ratio, while keeping the overhead and
need for control messages relatively low. Moreover, it is possible to tune parameters at run
time to perform better in certain situations.
As already stated in the previous chapter, results of these simulations can be used when
developing a smartphone application which allows opportunistic (ad hoc) communication at
mass events such as music festivals. Indeed, in such an application a similar protocol as
evaluated in the simulations can be used to route data packets in the network. We will discuss
this further in section 11.2.
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4.1 Introduction

After discussing how surreptitious tracking of smartphone users is possible, and how these
techniques can be used both for nefarious purposes and for good, we show how the impact
of this and other techniques and vulnerabilities (such as the use of ‘stimulus frames’ [Bratus
et al., 2008]) can be measured. Indeed, even though these tracking techniques have obvious
advantages to researchers (as we saw in the previous chapter), they should be considered as
‘vulnerabilities’ to the smartphone users themselves, who are tracked surreptitiously without
the ability to decline it.

An impact assessment is based on the severity of the vulnerability itself and the number of
affected devices. While the severity of the vulnerability is an arbitrarily defined concept that
may include properties such as exploitability, remediation level, impact on availability or
confidentiality, etc., the number of affected devices can be objectively measured. To measure
the number of affected devices, several approaches can be considered depending on whether
the vulnerability is caused by an implementation issue (vendor or operating system specific),
a protocol design flaw, or a combination of both. In case of a vulnerability in a protocol
such as WPS or WPA/TKIP for example, one could sample a number of Beacon frames from
Access Points (APs) in a nearby city to approximate what percentage of APs supports the
protocol. For vendor specific vulnerabilities, e.g. in a specific model of smartphone, it might
be useful to look at sales reports1 to see whether the device is prominent in the market or
not. Unfortunately, such reports can be very expensive to obtain. Furthermore, the number of
affected devices depends on geographical location and time: a given protocol could become
deprecated (e.g. WEP), and some countries will adopt new protocols faster than others.

To help solve these problems, we introduce Wicability2, an open platform created for re-
searchers that aims to provide insights into the spatial and temporal impact of security vul-
nerabilities through the analysis of 802.11 Information Elements (IEs). We have performed
an initial analysis on our own datasets, gathered through the WiFiPi system described in
Chapter 2, and welcome contributions from external researchers. Our tool distinguishes it-
self from other open databases such as WiGLE.net [WiGLE.net, 2016] and CRAWDAD [Yeo
et al., 2006a] in that it can be used to determine the percentage of devices that support a given
protocol at a certain time and location. In the next sections, we will discuss this platform.

We first explain how the Wicability platform operates, showing how the collected data is
transformed and presented by the system. We then present a case study, based on vulnerabil-
ities that can be used to instigate transmissions from tracked devices.

1Sales reports can include, for example, Forrester or Gartner reports.
2The Wicability website is available at https://wicability.net/.

https://wicability.net/
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Figure 4.1: The three processing stages of Wicability

4.2 Capability aggregation

The protocols and capabilities supported by different devices are advertised in IEs. Such IEs
are exchanged between stations (STAs) and APs prior to association through Probe Request,
Probe Response and Beacon frames so that both parties know which protocols, data rates,
and crypto suites can be used for communication. Our approach for aggregating this infor-
mation comprises an acquisition, matching and presentation stage as shown in Figure 4.1.

4.2.1 Acquisition

To obtain a representative set of IEs, we have deployed multiple monitoring devices at densely
crowded locations. Here, each monitoring device passively captured all management frames
containing IEs using libpcap and a wireless interface configured in monitor mode. The
captured frames were then forwarded to a central server over an SSH tunnel. No additional
processing was performed at the monitoring devices in order to minimize their complexity.
Alternatively, a pcap file can be provided to the server directly for analysis.

We are aware of the fact that the forwarded messages contain privacy sensitive data such
as the MAC address and SSID list. To ensure the privacy of the monitored STAs, we do
not collect any data frames, and we make sure that none of the collected MAC addresses or
SSIDs are accessible through the public platform.
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4.2.2 Matching and processing

In the matching stage, the captured IEs are grouped per MAC address and per dataset.
The MAC addresses are only used to distinguish between different devices. Thus, exter-
nal datasets may be supplied using only anonymized MAC addresses, as long as each real
MAC address is consistently mapped to its corresponding pseudonym. For example, we
anonymized our own datasets by replacing the 3 least significant bytes of each MAC ad-
dress with a different value, with exception of “ff:ff:ff” and “00:00:00”. For example, the
3 least significant bytes of the first encountered MAC address in our dataset are replaced
with “00:00:01”, those of the second one with “00:00:02”, and so on. As mentioned in Sec-
tion 2.8, to be able to consistently map each device to the same anonymized MAC address,
this anonymization can only be performed after the data collection is complete.
As will be discussed in Section 8.2.2, devices might randomize their MAC address in order
to avoid being tracked in the way discussed in Chapter 2. This makes it seem like different
packets from this device originated from different devices. Ideally, frames containing ran-
domized MAC addresses should be excluded in order to prevent counting the same device
multiple times. We offer two approaches to filter these random MACs. In a first approach,
we filter out frames having a MAC address that has either of the following properties:

• The Organizationally Unique Identifier (OUI) part of the MAC address does not corre-
spond to a registered vendor in the OUI list, managed by by IEEE.3 The OUI comprises
the first 6 bytes of the MAC addresss, and corresponds to the vendor or manufacturer
of the wireless chip or the mobile device.

• The “locally administered bit” of the MAC address is set. This bit (the second-to-least-
significant bit of the MAC address’ first octet) indicates whether the MAC address is
globally unique and assigned by the manufacturer (set to 0) or whether it is locally
administered (set to 1).

Our second approach utilizes MAC layer fingerprinting techniques that are described in a
different paper [Robyns et al., 2017] (not included as part of this dissertation) to link similar
IEs transmitted by random MAC addresses to their corresponding real MAC address.
Some processing is done to extract the original IEs and their associated IE fields from the
management frames. Additionally, the OUI part of the MAC address is resolved to its cor-
responding “assignee” (vendor or manufacturer), in order to allow users of the Wicability
platform to filter by vendor, or to view the vendor distribution for different capabilities and
IE fields.
Finally, the dataset is labeled with the location, duration and timestamp of the capture.
Datasets can also be filtered afterwards based on this timestamp, to account for longer-
running data acquisition phases.

3A list of all OUIs registered by IEEE is available at http://standards.ieee.org/develop/regauth/oui/
oui.txt.

http://standards.ieee.org/develop/regauth/oui/oui.txt
http://standards.ieee.org/develop/regauth/oui/oui.txt
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4.2.3 Presentation

After the observed IEs have been matched with a specific device, each IE is parsed, converted
to a queryable and human readable format, and stored in a public database. Privacy sensitive
data such as the MAC / pseudonym and SSID names are excluded from this operation. The
resulting dataset can be queried by researchers using the Wicability web interface. Figure 4.3
shows an example where the distribution of Supported Rates values is shown by filtering for
that specific IE. Also shown is the vendor distribution for devices that transmit the Supported
Rates IE. The distribution of each possible field, field value or vendor in an IE can be queried.

4.3 Case study: prevalence of devices susceptible to active
probing attacks

To demonstrate how researchers can use the Wicability platform to show the impact of a
vulnerability, we provide an example case where we assess to what extent a newly discovered
technique for instigating Wi-Fi packets would help in detecting devices.

In 2017, we published a paper (not included as part of this thesis) describing a number of
methods for increasing the number of packets sent out by Wi-Fi devices in range of a mon-
itoring station, used for tracking [Robyns et al., 2017]. 802.11 frames that can be used for
this purpose are sometimes referred to as ‘stimulus frames’ [Bratus et al., 2008]. For the
purposes of this case study, we use one specific example of a stimulus frame that we de-
scribe in the paper, called a Generic Advertisement Service (GAS) request. The technique
(or attack, depending on the viewpoint) using GAS request frames causes any device in range
supporting the IEEE 802.11u “Interworking with External Networks” standard to respond
with a GAS response frame. The described method could be used, for instance, to improve
tracking techniques such as the one being described in Chapter 2 by increasing the number
of transmissions from devices. This allows not only a larger number of devices to be tracked,
but also allows for an increased number of data points per device, allowing for more granular
tracking.

To see what percentage of devices would be susceptible to this technique, we can use the data
that is available through Wicability. Indeed, since this technique can be used on any device
supporting the IEEE 802.11u standard, and since support for this standard is announced by
devices in specific IEs, we only need to look at the number of devices that included this IE as
part of their Probe Request frames.

To get an idea of how many devices are affected, we inspect the “Glimps 2015” dataset,
containing data for 28 047 devices collected over the period of three days at a music festival
in Ghent. We limit ourselves to only mobile devices from users (filtering out access points)
by selecting the “Only STAs” option, and can see directly from the graphs that 7 508 of these
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Figure 4.2: Vendor distribution for 7508 devices supporting the “Interworking” capability.

devices support the “Interworking” capability. From this, we can conclude that the described
technique would allow us to more easily track 27% of smartphones.4

To see which types of devices are most likely to support Interworking capabilities, we can
filter the dataset by the presence of the Interworking IE. This shows that by far the most
popular vendor supporting Interworking (and thus, being vulnerable to this attack) is Apple,
accounting for 64.9% of affected devices. This does not only show that using the aforemen-
tioned technique can be a great help in detecting Apple devices, it also shows that using the
technique might skew the set of detected devices towards including more Apple devices, re-
vealing a bias that was not clear beforehand. Thus, we conclude that the Wicability platform
can be beneficial to researchers when trying to assess the impact of newfound techniques and
vulnerabilities.

A similar analysis can be performed for another type of stimulus frames described in [Robyns
et al., 2017], called Block Acknowledgement frames. These frames must be supported by
any device supporting high throughput (802.11n) standards. However, in our experiments we
noticed that only 802.11n devices manufactured by Intel actually responded to these stimulus
frames. For this case, and again using the Glimps 2015 dataset, we can get an idea of the
percentage of affected real-world devices by filtering the dataset for only STAs broadcasting
the “HT Capabilities” IE that were manufactured by Intel. Filtering for manufacturer in
this case limits us to only 0.5% of all (21 349) devices broadcasting the HT Capabilities IE,
leaving only 101 devices (or 0.004% of all encountered devices) affected by this technique.

4Note that this 27% is an upper bound, since some of these devices might only support peer-to-AP GAS messages,
and not peer-to-peer GAS messages. We refer to our original paper [Robyns et al., 2017] for more information.
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Of less interest to this specific example, but interesting to note nonetheless is that, even
though only STAs were selected (excluding access points from the dataset), 8.2% of them
had set their Interworking fields “Internet” and “ASRA” to ‘1’, indicating the ability to pro-
vide internet access to other devices. This could indicate that these devices were allowing
internet tethering to other devices, though these devices also set their “ESR” and “UESA”
fields (usually reserved to only access points offering reachability to emergency services) to
1, which might indicate that these devices did not adhere to the standard instead. Indeed,
manually verifying the original data shows us that these devices (all of them having Apple as
their vendor) have all of their Interworking fields set to ‘1’, suggesting that the standard was
not adhered to for some Apple devices.

4.4 Datasets
As of March 13, 2017, the Wicability website offers statistics for four datasets:

• A dataset of STA probe requests collected by Marco V. Barbera et al. at Sapienza
University in Rome, Italy in 2013 [Barbera et al., 2013], which we gathered from the
CRAWDAD website [Yeo et al., 2006b].

• A dataset of STA probe requests collected at political meetings by the same team as the
previous dataset, again gathered from the CRAWDAD website.

• A dataset of STA probe requests collected by us (in collaboration with The Safe Group)
at the Glimps music festival in Ghent in 2015.

• A dataset of metadata from packets originating from both STAs and APs, collected at
our own research institute (UHasselt EDM) in 2016.

4.5 Conclusion
We have introduced Wicability, an open platform that can be utilized as a tool to quantify the
impact and remediation rate of protocol vulnerabilities, covering research question RQ2 and
providing a platform to researchers who want to assess the impact of any discovered protocol
vulnerabilities in the future. Additionally, the platform can be used to determine the number
of devices observed from a specific (chipset) vendor or operating system, along with their
supported capabilities. An overview of its core functionality was presented, which comprises
the collection and analysis of IEs acquired through passive monitoring. Furthermore, we
provided a case study based on our own work that shows how the Wicability platform can be
used by researchers to assess the impact of such newfound techniques and vulnerabilities.

To complement our own collected data, we welcome submissions from external researchers
to the Wicability platform. These submissions can be provided in the form of anonymized
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pcap files, where the SSID names and MAC addresses have been replaced with pseudonyms.
As a result of these contributions, progressions such as the adoption of 802.11w amendment
support for protected management frames in response to Deauthentication frame Denial
of Service (DoS) attacks for example, can be studied in a spatio-temporal manner.
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(a) Different filtering options, allowing to resolve ran-
dom MAC addresses, filter out access points or non-
AP STAs, and define a time range.

(b) List of IEs sent out by selected devices, allowing
for selection of one specific capability which will then
be added to the filter list

(c) The distribution of vendors corresponding to all
devices included after applying the filters (including
selection of IEs).

(d) Fields sent out for the selected IE.

(e) The popularity of the different values for the se-
lected field.

Figure 4.3: Example use case where Wicability is queried for the Supported rates IE of non-
AP STAs.



Part I: Conclusion

In this part, we demonstrated how easy it is to gather privacy-sensitive information from
smartphone users’ devices. We showed that people tracking can be achieved at a very low
cost and – more importantly – unobtrusively and without requiring active cooperation from
the users themselves. We demonstrated this in the context of a three-day long music festival
by tracking 29% of the 100 000 festival visitors (and up to 46% in a repeated study). We dis-
cussed how, since publishing our work, different marketing agencies and public institutions
have already started adopting similar techniques.
To show that such data collection does not need to be used for nefarious (or business) pur-
poses, we also present an extra case study, where we use mobility data gathered during the
music festival to optimize opportunistic routing protocols that can be used in the develop-
ment of an opportunistic communication app. The usage of realistic movement data instead
of traditional synthetic models helped to select routing protocols that are suited for use in
actual festival scenarios; we concluded that the Epidemic and binary Spray-and-Wait routing
protocols are good candidates when developing such an app.
Even so, privacy implications of the ability to use similar techniques to extract privacy-
sensitive information are abundant, and are amplified by the fact that they can be executed at
a very low cost. Indeed, even if marketing agencies and public institutions comply with eth-
ical and legal standards, nothing prevents a malicious actor from using the same techniques
to gather information or mount attacks. We will go into more detail about these privacy and
security issues in the next part of this dissertation, where we will look at how we can both
measure, and improve, users’ awareness.
To aid other researchers investigating security and privacy issues in wireless networks, we
introduced the Wicability platform, which can be utilized as a tool to quantify the impact and
remediation rate of protocol vulnerabilities. We demonstrated the utility of the system by
providing a case study based on our own work that shows how the Wicability platform can
be used by researchers to assess the impact of such newfound techniques and vulnerabilities.
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Part II

Creating and assessing user
awareness





Introduction

As is clear from the previous chapters, many threats to security and privacy exist when con-
necting to Wi-Fi networks using a smartphone or other mobile device. To gauge how aware
users are about this fact, we conduct two studies, both of which confront randomly selected
mobile device users with their privacy-sensitive data that is surreptitiously collected. A third
study is conducted to explore the reasoning of smartphone users when making other privacy-
sensitive decisions. These studies do not only aim to provide an indication of the users’
awareness, but also serve as a way for increasing this awareness for the modal user.

The first study uses a system called SASQUATCH, which builds directly on the WiFiPi sys-
tem from Chapter 2. SASQUATCH is a setup consisting of a network scanner and a public
display, which alerts users about privacy issues related to W-Fi networks by displaying pri-
vate but anonymized information. The study consists of having random passers-by interact
with this setup, and asking them about the accuracy with which this information can be used
to identify them. It also asks about their awareness about this information being available,
with a focus on gauging how worried participants were about this fact.

The second study uses the personal mobile devices of preselected participants to both assess
and increase these participants’ awareness about privacy and security issues. For this purpose,
participants are asked to install an app on their devices for a period of 30 days. This app
collects information about which apps connected to the internet over which Wi-Fi networks,
together with security characteristics of these connections. Again, participants are confronted
with this information at the end of the study with the goal of gauging both their awareness
and privacy sensitiveness.

The last study uses a similar methodology to the second one to explore the reasoning of
smartphone users when they’re making other privacy-sensitive decisions related to apps. This
is done by asking 150 participants about this reasoning using in-situ questions, asked at the
moment (and with the context) the decision is made. We will focus on decisions related
to runtime permissions, where users need to decide on apps’ access to sensitive data using
context at hand.
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5.1 Introduction

As we saw in the previous chapters, large scale collection of private data is something that is
relatively easy to do, even with limited resources. Thus, it is not something that is reserved
to large organizations with world-wide networks, as is often thought. To see how aware
smartphone users are about these privacy and security dangers, and to increase this awareness
in the process, we conducted a study in 2014.
In recent work, Könings et al. propose a model to enhance user-centric privacy aware-
ness [Könings et al., 2013]. Three core questions are put forward in this work that contribute
to the understanding of privacy: who is affecting my private data, what is the purpose (why)
and how is it being accomplished. Most mobile phones, however, openly share their list of
previously accessed networks to increase the comfort and ease of use for the end-users but
fail to inform the users about the consequences. A study performed in 2009 by Klasnja et al.
shows that users are unaware of important privacy risks when using Wi-Fi networks [Klasnja
et al., 2009]. An interesting result in this study is that many of the participants thought about
a hacker as a highly skilled attacker who breaks into their computer, and not as someone who
can passively collect their data when it is sent over the network. The fact that people are in
general very susceptible to Wi-Fi attacks is confirmed by Kindberg et al., who were able to
mount a phishing attack on the login page of a public hotspot, tricking 32% of users con-
necting to their own fake hotspots into entering their mobile phone number [Kindberg et al.,
2008].
Other work shows that, when confronted with possible privacy concerns, people are willing
to act in the interest of preventing further privacy leaks. A survey of 2254 participants by
Boyles et al. [Boyles et al., 2012] demonstrated that 57% of all smartphone app users have
either uninstalled an app over concerns about having to share their personal information,
or declined to install an app in the first place for similar reasons. An empirical study by
Günther et al. [Günther and Spiekermann, 2005] assessing the privacy fears related to using
Radio Frequency Identification (RFID) showed a similar trend: 73% of 129 retail consumers
preferred RFID to be disabled on checkout. Moreover, results presented by Consolvo et
al. [Consolvo et al., 2010] show that a user’s privacy awareness can be increased by showing
the user personal information that is unwittingly shared. The ubiquitousness of wireless
networks and mobile hardware, together with the impact of these practices and the importance
that users attach to privacy make that there is a urgent need for raising awareness and making
mobile system developers accountable for informing their users.
In this work, we describe a system called SASQUATCH that collects privacy-sensitive infor-
mation that is sent out inadvertently by people’s smartphones.
The main contributions for this chapter are as follows:

1. We explore whether people can identify themselves when we show them information
that is contained in a list of previously accessed networks.
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2. We report about creating user awareness about potential privacy and security issues
when a smartphone connects to Wi-Fi networks.

3. We assess the effort the average smartphone user is willing to invest in securing against
privacy leaks.

4. We provide a method to explain to smartphone users what can be done to secure against
privacy and security issues.

For this purpose, we combined SASQUATCH, our system that gathers data from mobile
phones and impersonates networks, with a public display that pictures the data that is cap-
tured. The visualizations used are, of course, anonymized and carefully abstracted.

5.2 Mobile Phones that “Never Forget”

Remember that the WiFiPi system from Chapter 2 collects Wi-Fi signals sent out by smart-
phones at multiple strategic locations on the festival terrain. By using the unique smartphone
identifier (MAC address) contained in each of these Wi-Fi packets, and correlating captured
signals at different locations, it is able to track visitors over the entire festival area. As we
discussed in Section 2.6.3, we also repeated this experiment, collecting additional data in the
form of SSIDs (network names for the networks remembered by the visitor’s smartphones),
which allowed us to uniquely identify nearly a quarter of smartphones based on only one of
their remembered networks. In Section 2.8, we already hinted at possible privacy implica-
tions of our tracking system.
Similar to results by Klasnja et al. [Klasnja et al., 2009], we noticed that most people are
not aware of this information leakage. In a short prestudy in our lab environment we were
able to identify a significant number of our own colleagues (researchers with a background
in computer science) solely based on the network SSIDs sent out, the manufacturer of the
smartphone or the time at which they entered or left our lab building. We confronted 10
colleagues with this information. All but one of them indicated that they were not aware that
this information was so easily obtainable. This is not surprising, as many smartphones do
not display the list of ‘remembered’ networks. iPhones and iPads in particular only show a
stored network name when it is in range, leaving users in the dark about which information
is leaking from their phones (or, that any information is leaking at all).

5.3 The SASQUATCH System

SASQUATCH consists of a single machine capturing all probe requests that are sent out by
smartphones in range. The information obtained through this mechanism is used in three
ways:
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• The SSIDs of the networks broadcasted by a user’s smartphone are used to create a pro-
file of the user. This is done not only by gathering the network names, but also by look-
ing up the SSIDs of these networks in the WiGLE.net wardriving database [WiGLE.net,
2016], which allows to find the specific locations of access points. These locations are
used to make an educated guess (calculated via the method outlined in section 5.3.1)
about the user’s whereabouts.

• The system executes an Evil Twin attack [Roth et al., 2008], impersonating networks in
the smartphone’s PNL, in order to identify which networks correspond to open access
points. How this method works, and how it can be used to identify open networks is
discussed in section 5.3.2.

• The manufacturer of the smartphone is derived from the Wi-Fi packets by deriving the
Organizationally Unique Identifier (OUI) from the MAC address in each packet, in the
same way as for the Wicability system (see Section 4.2.2 for more information). The
system performs a lookup for this identifier in the OUI list, kept up to date by IEEE.

5.3.1 Inferring a smartphone’s whereabouts

Since the SSIDs of wireless networks may be used by multiple access points (often located at
different locations), there is no one-to-one mapping of networks and locations. To make an
educated guess about a subject’s visited locations, we combine both types of networks (open
as well as secured), and query the WiGLE.net wardriving database. This database contains
crowdsourced data about networks, among which their GPS coordinates. The data is collected
by people (calling themselves “wardrivers”) who drive around, scanning for all networks in
range, and collecting information about those networks (including the used encryption, the
wireless channel, and other parameters that are available by only scanning) [WiGLE.net,
2016]. Our method for deriving a location from a network SSID is as follows:

1. For every network in the smartphone’s PNL, query WiGLE.net for a possible list of lo-
cations, returned as (latitude, longitude) tuples. Assign to every one of these locations
a chance of 1

#locations_ f or_network . For instance, because the SSID UHasselt-Guest

returns 19 possible access points at different locations, we assign to each of these lo-
cations a chance of 1/19. This chance only depends on the number of results for the
current network, and is in no way related to the number of locations returned for other
SSIDs in the subject’s PNL.

At this moment, we have no way of telling whether any or all of these locations are
results for access points at the same location. This will be accounted for in the next
steps.

2. Use Google’s reverse geocoding API to infer the city corresponding to the (latitude, longitude)
tuple returned by WiGLE.net. For instance, given that the first result returned for SSID
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UHasselt-Guest is the tuple (50.93173981,5.39291286), we infer that this network
has a 1/19 chance of being located in Diepenbeek. We denote this as p(city,network) (or
p(Diepenbeek,UHasselt-Guest) for our example).

3. Combine the chances for the cities in the previous step for all of the smartphone’s
networks to deduce the chances that the user visited a certain city, by assigning every
city a value that is the sum of the chances that any of the networks is situated in this
city, as follows:

pcity = ∑
networks

p(city,network)

The resulting value should not be thought of as a mathematical probability, since it is
possible that it is larger than 1. Rather, the value gives an indication on the probability
that the device effectively visited a specific city. We discuss how this value is used to
assess whether a device visited a certain location below.

Even if multiple networks have only a small chance of individually being associated with
a certain city, together they can be used to infer that a person went to that city with high
probability. For example, assume that network N1 has a chance of only 0.5 of being located
in either city C1 or city C2, and network N2 has a chance of 0.3 of being located in either
one of cities C2, C3 or C4. It can then be inferred that the user has a high probability of
having visited city C2. Moreover, networks that return different possible locations may have
a majority (or all) of them located at the same approximate location (e.g., because there were
multiple hotspots with the same SSID in the same building). This is also accounted for by
recombining the location chances in the last step.
SASQUATCH determines a device to have been at a location if the resulting pcity value for
that location is strictly greater than 0.5. The reasoning behind this is as follows: if a network
is available at two or more locations, the maximum possible chance assigned to a specific
location is 0.5. Therefore, at least two networks are needed to obtain a chance > 0.5. A
similar case can be made for networks that exist at four locations (at least four are needed),
and so on.

5.3.2 Determining a network’s authentication type

Probe requests only contain the SSID of the network the device wants to connect to, omitting
the type of authentication that will be used for this connection. This authentication informa-
tion is only available as part of the probe response, sent out by the access point.
Because probe requests do not contain an authentication type, SASQUATCH sends out a
probe response as if it is an open network for every probe request it received, effectively
pretending to be an open network in the smartphone’s network list. Thus, when a smartphone
tries to connect to the SASQUATCH system (by sending it an authentication request), our
system can infer that the network with the SSID contained in the probe request is indeed
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Figure 5.1: The setup, as it was deployed at our research insitute. The main screen, displaying
aggregate information about all smartphones in a range of 50 meters is shown on the left. To the
right of this screen is another (smaller) screen, on which a smartphone user can choose to display
the information our system gathered from his/her smartphone.

an open network. This method of tricking devices into connecting to an access point by
pretending to be a known network is called an Evil Twin attack [Roth et al., 2008].
Our system stops here: smartphones that try to connect to SASQUATCH are prevented from
actually establishing a connection by not acknowledging their association request. A person
with malicious intent, however, can continue from here and set up a successful attack: as soon
as a smartphone connects to one of the spoofed networks, this attacker is an active man in the
middle. This allows the attacker to capture the smartphone user’s data, even when it should
be sent over encrypted (SSL) connections [Marlinspike, 2009]. This is especially worrying
with smartphones, where many applications continuously check for new information in the
background.

5.4 Study

We have performed a field study in which we explored whether people can recognize them-
selves if bits of information retrieved from their smartphone are displayed, assessed the level
of awareness people have about the “open nature” of their smartphones, and evaluated the
people’s willingness to secure their smartphones against information leakage. Based on this,
our hypotheses are that (1) people will be able to recognize themselves when their data (con-
sisting of past networks and locations) is shown, (2) people are unaware about the amount of
information being shared by their smartphones, and (3) people are willing to put a minimal
effort (e.g. installing an app) in securing their smartphones.
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The apparatus we deployed for our study is a public display that shows the data gathered
by SASQUATCH. The public display setup consists of two parts: a large display for public
usage and a smaller one that can be used individually (see Figure 5.1):

• The large public display shows both the aggregated locations and the insecure (open)
networks of all smartphones that were in range in the past 5 minutes.

• The smaller display shows the information that was inferred from a single smartphone.
Viewers are invited to give consent for displaying their information by performing an
action.

The public display visualisation was designed to trigger a “honeypot” effect [Brignull and
Rogers, 2003], i.e. to entice people to start interacting with the screen. The map-based
visualisation in combination with a list of names of networks (see Figure 5.2) made it easy
for people to recognize (part of) themselves on the display while remaining anonymous.
Participants in our field study were passers-by that were drawn to the screen out of curiosity
because of what they noticed on the screen. We also had an assistant that stimulated people to
look at the display. We distinguish between passive participants, participants that inspected
the public display but did not interact, and active participants who actively engaged with the
setup to view the information that was shared by their smartphones.
We deployed our apparatus at two different locations: our research institute entrance hall and
the university’s main hall. The setup was active for several days at the research institute and
attracted 51 active participants over the course of a week. At the university’s main hall we
deployed the system for one day and we attracted 31 active participants. We estimate the
number of passive participants is three to five times the number of active participants (based
on our observations; no counts were done of passive participants).
The public display (see Figure 5.2) is designed in a manner similar to work by Kowitz et
al. [Kowitz and Cranor, 2005], in that it aims to strike a balance between notification and
privacy. We achieve this by having the display show a list of locations that any of the devices
that are in range (approximately 50 meters) have visited, based on the algorithm described in
section 5.3.1, as well as an overview of open networks these devices have in their network
lists. The reason for this is that it is easy for people looking at this information to identify
themselves (inviting them to further inspect the setup), while keeping privacy-sensitive infor-
mation hidden from other people. Indeed, it is infeasible to identify the locations a particular
person has visited by looking at the aggregate information. Similarly, while it is possible to
view the aggregate SSID information about all devices in range, it is infeasible to determine
the networks a specific device connected to. This also caters to possible legal issues: before
we started with the study, we sought advice on possible legal issues and ensured we were
allowed to show the aggregated information on the public display.
The smaller, private display initially shows the steps a visitor has to undertake in order to view
the information his/her own smartphone is leaking (see Figure 5.3). As soon as user consent
is given (by connecting to a specific network or scanning a QR code), his/her information
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Figure 5.2: A screenshot of the information available on the public display. The top of the page
shows the aggregate locations for all devices, together with a heatmap of these locations. The
bottom of the page shows a list of open networks devices wanted to connect to, and an invitation
to partake in the study.

Figure 5.3: A screenshot showing the instructions that are displayed on the private display. The
visitor is invited to scan a QR code or connect to a network to display his/her personal informa-
tion.
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Figure 5.4: A screenshot showing private information for a smartphone. Included are the lists
of open and closed networks, the inferred locations, and an invitation to fill out the survey. Also
briefly explained are the dangers of connecting to open networks.

is displayed in a specific manner (see Figure 5.4), distinguishing between open (dangerous)
networks and closed networks. Also displayed is the list of locations that SASQUATCH
inferred to have been visited by the user.
After the participant information is displayed, he/she is asked to complete a short survey.
The survey inquires on the accuracy of the displayed information, on how worried the user
is about this information leaking to third parties, and on the amount of effort he/she would
spend to mitigate information leakage. At the end of the study, the user is given a tutorial
teaching him/her how to prevent future leaks.

5.5 Results
During our field study, the setup captured Wi-Fi signals of 1 404 devices. 82 people chose
to show their personal data on the second screen of our setup, and 66 people filled out our
survey. The survey participants (both male and female) were aged from 17 to 59 years old,
all having completed high school or higher.
The packets sent out by smartphones during our study showed that the problem of a PNL con-
taining open networks is widespread: of the 1 404 devices that passed our setup, 628 (45%)
contain at least one open network in their PNL1. The second problem, where an eavesdropper

1This is a lower bound, as most devices will not have broadcasted their complete PNL during the time they were
in range of our setup (see Section 5.6). Moreover, a significant portion of networks may have been connected to
the university network, which might have prevented them from trying to initiate a connection with our (spoofed)
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Table 5.1: Statistics for devices that passed by the SASQUATCH setup

Detected devices 1 404
Devices with open network 628 (45%)
Devices mapped to real-world location 893 (64% of total, 88% of long-in-range)

Table 5.2: Correctness of the data displayed by the SASQUATCH system, as reported by the
participants

None of the displayed data was correct 0 (0%)
One point of information (location or network) was correct 12 (21.8%)
Some information was correct 8 (14.6%)
Almost all information was correct 8 (14.6%)
All displayed information was correct 27 (49.1%)
I did not use the system 11 (16.7% of total)

would be able to determine a smartphone’s whereabouts based on the networks in its PNL
is also real: we are able to relate 893 devices (64%) to at least one real-world location with
a certainty of over 0.5 (calculated as in section 5.3.1). If we account for the fact that not
everyone’s full PNL was captured (see Section 5.6) by only counting smartphones for which
we captured at least 3 SSIDs, we find that for these 273 devices, 241 (88%) of them could be
mapped to at least one real-world location. An overview of this data is available in Table 5.1.
To check the correctness of both the networks and the inferred location data, we asked the
survey participants whether they were able to recognize their own data. 55 of the survey
participants had chosen to display their data on the second screen, of which 64% indicated
that nearly all or all information was correct, with the other 36% indicating that only part of
the information was correct (a full overview is available in Table 5.2). None of the participants
indicated that no correct data was shown. This confirms our first hypothesis, which says that
people are able to recognize their information when the data related to their smartphone is
shown.
Survey participants were most surprised about an attacker’s ability to spoof networks that
were in their PNL: 34 of them (52%) expressed that they were not aware that this could
be done. Furthermore, 29% of the participants was not aware their visited locations could be
extracted by an eavesdropper, with 30% indicating they did not know their preferred networks
could be seen by anyone with basic computer knowledge. In total, only 24% indicated that
none of the displayed information surprised them, confirming our second hypothesis that
most people are unaware about at least part of the data leaking from their smartphones. These
results are summarized in Table 5.3.

network, even though they broadcasted probe requests. In Chapter 6, we will show that one in three smartphone
users will connect to at least one open network in the course of 30 days.
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Table 5.3: Pre-study awareness of participants about different security and privacy issues related
to using a mobile device on wireless networks, as measured by the response to the question “Which
of the displayed information surprised you?”

None: I was aware that others could see all of the displayed information 16 (24.2%)
My visited locations 19 (28.8%)
The list of networks in my smartphone 20 (30.3%)
The fact that an insecure network can be spoofed (and that my
smartphone would connect to it)

34 (51.5%)

Table 5.4: Reponses to the question “For which of the following groups of people would you be
worried if the displayed information was available to them?”

I don’t care if anyone sees this information 13 (19.7%)
People you know (friends, family, colleagues) 19 (29%)
Civil authorities (police, security service, the NSA) 31 (47%)
Companies (stores, marketing companies) 33 (50%)
Other (random) people 43 (65.2%)

80% of the surveyed people indicated that they were worried about someone being able to
view the information that was gathered by the SASQUATCH system (see Table 5.4). Survey
participants were the least worried about the information leaking to friends, family or col-
leagues (29% of all participants), followed by civil authorities (47%), stores and marketing
companies (50%), and other (random) people (65%).

Our third hypothesis, in which we state that people would be willing to put a minimal effort
into making their smartphone more secure, is confirmed by the fact that 62% of the people
surveyed indicated they were willing to make this effort, with 15% willing to do “whatever
it takes”. When explicitly asked whether they were willing to install an app to mitigate the
privacy and security issues discussed, 59% answered ‘yes’. 30% felt that it was the job of
smartphone manufacturers to secure their smartphones against these kinds of attacks, even
if some of them indicated that they were willing to put in an extra effort to secure their
smartphones themselves. Only 5 participants (7%) did not want to undertake action because
they were not worried about information leakage from their smartphone. These results are
summarized in Table 5.5. To cater to people willing to make their smartphone more secure,
the end of the survey contained a link with instructions about how networks can be removed
from a smartphone’s PNL. As a result, we noticed that several of the participants removed
several networks from their PNL after participating in our survey. To cater to the 59% of
participants that indicated they were willing to install an app to prevent the demonstrated
security problems, we will introduce Wi-Fi PrivacyPolice in Chapter 8.3. This Android app
is designed to prevent exactly the problems that were presented by SASQUATCH.
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Table 5.5: Reponses to the question “What effort are you willing to take to make your smartphone
more secure?”

Installing an app 39 (59.1%)
Performing a monthly manual check 29 (43.9%)
I am not willing to make an effort,
this should be the job of the smartphone manufacturer

20 (30.3%)

Everything necessary, regardless of the effort 10 (15.2%)
I am not willing to make an effort,
I am not worried about information leaks

5 (7.6%)

Interesting to note is that 59% of the people who filled in the survey wanted to be kept up-
to-date on our new developments to help improve privacy and security for smartphone users:
they actively ticked the box that their e-mail address could be used for further updates on this
research.

5.6 System analysis and limitations
In Section 5.1, we hinted at the fact that a system for eavesdropping similar to SASQUATCH
can be built at a very low cost with minimal effort. We consider a Raspberry Pi to pro-
vide sufficient computing power. Because of this, the basic hardware for a system similar
to SASQUATCH (a Raspberry Pi and a Wi-Fi dongle supporting monitor mode) can be ob-
tained for as little as US$40 (similar to WiFiPi, see Section 2.5). There are, however, some
limitations to building a similar system.
For example, while the use of the WiGLE.net database is suitable for profiling a single per-
son, the query limits imposed on users make it difficult to use this database in a system at the
scale of SASQUATCH. Indeed, thanks to cooperation of the WiGLE.net administrator, we
were able to query the database a significant amount of times more than a regular user could.
A normal adversary does not have this ability, and is thus more restricted in the amount of lo-
cations he/she can collect. Nonetheless, many commercial alternatives to WiGLE.net exist2,
requiring only slightly more funds to execute a successful attack. Moreover, a determined ad-
versary or one that aims to gather privacy-sensitive data on only a few people will be able to
gather all the location data that he/she desires. Even in the event that the number of networks
would exceed the number of allowed queries, profiling a single victim often does not require
querying a location database like WiGLE.net. For example, many networks may be known or
have an SSID named after the business or location where they reside (for corporate networks
and small businesses), or after the owner of the network (for home networks). To give an

2Some examples of commercial solutions that provide location information based on the information of Wi-Fi
access points in range are Combain (https://combain.com/), Skyhook (http://www.skyhookwireless.com/)
and Navizon (now Accuware https://www.accuware.com/).

https://combain.com/
http://www.skyhookwireless.com/
https://www.accuware.com/
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Table 5.6: Statistics for lookups of SSIDs on WiGLE.net, throughout all experiments and incar-
nations for which the SASQUATCH system was used.

Total number of distinct SSIDs broadcasted by all devices 6 540
SSIDs with a matching access point available on
WiGLE.net

3 416 (52%)

SSIDs that mapped to exactly one access point (and thus,
one location)

932 (14% of total, 27%
of all resolved SSIDs)

SSIDs that mapped to multiple access points, all of them
located in the same city

1 374 (21% of total, 40%
of all resolved SSIDs)

SSIDs that mapped to multiple access points across dif-
ferent cities or municipalities

1 110 (17% of total, 32%
of all resolved SSIDs)

idea of the success rate with which we were able to use the WiGLE.net for resolving associ-
ating SSIDs with real-world locations, we provide some statistics on WiGLE.net lookups in
Table 5.6. These results are based on the SSIDs gathered during all experiments for which
SASQUATCH was used (including installments of SASQUATCH at different conferences).

Similarly, an adversary targeting a single person does not need a highly efficient system
spoofing every network in every smartphone user’s list. Indeed, this type of attacker can just
as well set up a fake access point by configuring his/her wireless home router to use the SSID
corresponding to one of the networks in the victim’s PNL, effectively causing the victim’s
smartphone to connect to his/her network, making the attacker an active man in the middle
between the user’s smartphone and the internet.

In our study, we were often not able to gather the full PNL of a smartphone. Because of the
high density of smartphones at the university campus, and because our system tried to process
data by all smartphones, some packets needed to be dropped to be able to process all data in
real time. More importantly, because we were located in the main hall, many smartphones
only stayed in range for a relatively short time. This causes that some probe requests were
never sent while the smartphone was in range of our system.

For an adversary who targets a limited amount of people, getting the full PNL of the targets
is significantly easier. Indeed, if the stream of Wi-Fi packets can be filtered to only include
probe requests coming from a small number of devices, a system like SASQUATCH would
need only a fraction of the computing power of our setup, and fewer packets would have to
be ignored by either the network card or the firmware. Moreover, if only a few people are
targeted, it is easier to make sure that these people are within range of the system for a longer
time (either by moving the system towards the targets, or by having the targets stay in a single
place).



5.7 Conclusion 79

5.7 Conclusion
The first goal of this study was to gauge how aware mobile device users are about the dangers
inherent in using their devices on Wi-Fi networks (touching on research question RQ3). From
our results, we can see that 76% of our participants were unaware about one or more of the
issues presented by the SASQUATCH system. The security issue that surprised the most
users (52%) is that an attacker is able to spoof wireless networks in the user’s smartphone’s
PNL.
Similar to the security principle of responsible disclosure, our second goal was to raise aware-
ness on the data smartphones are leaking due to misconfiguration, insecure implementations
or network protocol characteristics. Making users aware of this will encourage them to expect
more from smartphone manufacturers with regard to handling privacy sensitive information
in their smartphones, and will allow them to take action to make their smartphones more
secure.
We achieved the second goal by having people interact with a public display setup that was
designed to raise awareness. To stimulate people to look at our screen, we created a “honeypot
effect” by having the display show open networks smartphones tried to connect to, as well as
locations for all Wi-Fi networks smartphones were looking for. Once users started interacting
with the public display more actively by scanning a QR code to indicate their interest in the
matter, we informed them about ways in which they can improve privacy and security on
their own smartphones.
Revisiting research question RQ2, we showed that smartphones leaking privacy sensitive
information is a very real and common problem (between 64% and 88% of devices could be
mapped to at least one previous physical location) and that a significant fraction of smart-
phone users are susceptible to the Evil Twin attack. Our study shows that 45% of users is
in direct danger, and that 52% is not aware that such an attack was possible. Our approach
to raise awareness on these issues was highly appreciated by the users (59% indicated they
wanted to be kept up-to-date on our developments to help improve privacy and security for
smartphone users) and has proven to be highly effective for informing users (76% of users
were not aware of these issues and is aware now), showing that it is indeed possible to inform
non-technical mobile device users about the dangers of using their devices on Wi-Fi networks
(answering the first part of research question RQ6).
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6.1 Introduction

In the previous chapters, we saw how third party actors (both malicious and benign) could
infer a smartphone user’s whereabouts by looking at their device’s Wi-Fi signals. We also
showed how information from these signals can be used to mount a so-called “Evil Twin”
attack, wherein a malicious actor tricks a device into connecting to its network. Both these
Evil Twin networks, as well as legitimate Wi-Fi networks offered by commercial or public
entities as a service to their customers allow the network operator to view metadata about
the (internet-)connections being made by connected devices – and, in case these connections
happen unencrypted, their data. Moreover, even networks provided by legitimate parties often
lack any form of security: as we saw in the previous chapter, at least 45% of the 1404 devices
encountered by the SASQUATCH system were set up to automatically initiate a connection
to at least one insecure network (see Section 5.5). This allows not only the network provider,
but also others within range of the network to eavesdrop on communications. Having access
to this information can allow for third parties to generate a highly accurate profile of mobile
device users, which entails inherent privacy risks [Troianovski, 2013].
The problem of security is worsened by the fact that not all apps are using secure methods
of connecting to the internet. Indeed, if apps fail to implement proper end-to-end encryption,
eavesdroppers are able to see the data sent by these apps on an insecure Wi-Fi network.
In 2012, Georgiev et al. showed that even when apps are using secure (SSL) connections,
they often fail to validate certificates correctly, opening the door to active man-in-the-middle
attacks [Georgiev et al., 2012]. This means that providers of Wi-Fi networks would be able
to intercept data, even if encryption is used. The researchers uncovered faulty certificate
checking in libraries for cloud computing (e.g. EC2), web services (e.g. Apache Axis),
merchant SDK’s (e.g. PayPal), and ad libraries (e.g. AdMob).
In this chapter, we want to find out how aware users are about these specific issues, and how
this influences their behavior when using Wi-Fi networks. Data from Eurostat shows that
48% of internet users indicated they had been limited or kept from performing an internet
activity (e.g. buying goods or providing personal information to online communities) due to
security concerns during the 12 months prior to a 2015 survey. However, only 13% of these
users had limited their internet use because of security concerns when accessing the internet
on a mobile device via a wireless connection from places other than home [Eurostat, 2016].
In the past, researchers have studied the amount of privacy and security awareness of Wi-Fi
users, with one of the more notable studies being performed by Klasnja et al. in 2009 [Klasnja
et al., 2009], where laptop users were surveyed about their network usage and corresponding
privacy concerns. These studies show that user expectations of privacy often do not corre-
spond to the reality, and that a person’s stance towards privacy often does not correspond to
their actual behavior [Norberg et al., 2007].
Our study expands on this earlier work while updating the methodology to deal with the
changing technology landscape. On one hand, it aims to assess whether mobile device users
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are aware of the network connections that are being made over Wi-Fi by installed applications
(possibly in the background). On the other hand, it tries to find out how comfortable these
users are with the fact that this application data is sent over the Wi-Fi network they are
connected to, allowing it to be monitored by either the network operator, an eavesdropper (in
the case of unsecured networks and connections), or both. We only consider the use of Wi-Fi
networks to access the internet by mobile device users, and not the Wi-Fi connections that
are used by network providers to access their backbones.
With this, we aim to get an idea of whether the principles of visibility and trusted path, as
defined by Yee [Yee, 2002], are satisfied for current mobile device users. The principle of
visibility states that “The interface should allow the user to easily review any active actors
and authority relationships that would affect security-relevant decisions.” The principle of
trusted path says that “The interface must provide an unspoofable and faithful communication
channel between the user and any entity trusted to manipulate authorities on the user’s behalf.”

6.2 Related work

This study is mainly influenced by work from Klasnja et al. [Klasnja et al., 2009], in which
participants’ network usage is monitored. Part of the study consisted of showing participants
a list of web sites to which specific bits of personal information were sent unencrypted, asking
the participants about their awareness on the transmitted information, and how they felt about
it. Klasnja et al. observed that four out of the eleven participants were aware that other
people could possibly access their information being transmitted over Wi-Fi, but that this
understanding did not raise concerns. Our study works in a similar way, while updating
the methodology to deal with the changing technology landscape where mobile devices are
rapidly surpassing notebooks in usage [Lella and Lipsman, 2016]. The revised methodology
uses smartphones and tablets as the main devices, and envisions to gather more quantitative
rather than qualitative data with a participant pool of N = 108. Our approach also considers
only the connection metadata (such as the originating app and the connection endpoint),
rather than the actual transmitted data.
After the study by Klasnja et al., Consolvo et al. introduced the “Wi-Fi Privacy Ticker” [Con-
solvo et al., 2010]. This tool informs users about sensitive data being sent out over their wire-
less interface, while indicating whether the connection is secure. The results of their study
show that the ticker helped participants to increase their awareness, and that it helped partici-
pants form more accurate mental models of the circumstances in which data gets transmitted,
eventually contributing to changes in user behavior while on Wi-Fi. In our work, we try to
(i) assess the level of awareness (without actively raising awareness) and (ii) determine if this
(long-term) awareness has a positive impact on security habits.
A study from 2010 by Swanson et al. [Swanson et al., 2010] reported on the perception of pri-
vacy and security when using wireless networks for a group of 11 randomly selected persons.
They show that users make security choices based on (often mistaken) analogies to the physi-
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cal world, similar to what happens in naïve, or ‘folk’ physics, and that this leads to users who
are confident in their knowledge about security while making unsafe decisions. They call this
phenomenon naïve risk mitigation, providing examples of participants trusting a connection
because they trust the company they are interacting with, or participants believing a malicious
actor would not have the time to sort through all the data that could be gathered. Their survey
also included an educational component, as it explained the associated risks of such actions
to the participants. This study shows the need for concrete examples of network scenarios
when surveying device users about security and privacy of their data.

Even when people think of themselves as privacy conscious, their actual behavior often does
not match their intentions. Norberg et al. describe “The Privacy Paradox” as the relationship
between individuals’ intentions to disclose personal information and their actual personal
information disclosure behavior [Norberg et al., 2007]. They find that individuals will actu-
ally disclose a significantly larger amount of personal information than their stated intentions
indicate.

Like privacy stance, there does not seem to be a direct relationship between a person’s tech-
nical background and the actions they take to control their privacy or increase their online
security. In a 2015 study, Kang et al. use diagramming to determine users’ mental mod-
els about the Internet, and conclude that individuals’ technical backgrounds do not influence
their privacy or security behavior [Kang et al., 2015]. Our study tries to assess whether these
findings also apply to users of Wi-Fi networks, by looking for correlations between technical
level and privacy intentions of the participants, and the security of networks they connect to.

In 2012, Chin et al. analyzed the confidence smartphone users had in smartphone security
and privacy [Chin et al., 2012]. The study finds that participants are less likely to perform
certain privacy sensitive activities on their smartphones than on their laptops, finding, e.g., a
difference of 7% vs. 60% of participants not willing to entering their social security number.
With the study being performed in 2012, participants cited reasons such as “new phone tech-
nology” for not trusting their mobile devices with privacy sensitive information. However,
some participants also noted not trusting the Wi-Fi network, or mentioned “potential hackers
hanging out in cafes”. These results seem inconsistent with a Eurostat survey from 2015,
where only 13% of participants had limited their internet use because of security concerns
when using the internet with a mobile device via a wireless connection from places other than
home (compared to 70% in total) [Eurostat, 2016]. This could indicate that the technology
landscape has changed considerably since 2012, with smartphones becoming a more integral
part of people’s lives.

A more recent study from Clark et al. shows that users of Internet services are often un-
aware about which of their data is transmitted to the cloud and stored there, using GMail’s
attachment storage as an example [Clark et al., 2015]. They show that task-oriented users
rarely stop to think about the security implications of their actions. We suggest that the same
might apply to wireless network users, quickly connecting to a free Wi-Fi hotspot in order
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to perform a task at hand (e.g. to get to a website containing information needed at that
moment).
With these studies indicating a possible discrepancy between users’ privacy attitudes and
behaviors between five years ago and now, our goal is to assess to what extent the shift
from personal computers and laptops to smartphones has impacted these privacy properties.
Moreover, we want to find out whether the Privacy Paradox also applies to mobile device
users in 2017. Our main contribution can hence be summarized as the answer to the question:
with a security landscape that changed significantly since 2009, did privacy perceptions and
practices change with it?

6.3 Methodology
Our study consists of two phases: first, network connections made by apps on the participants’
devices over Wi-Fi are logged for 4 weeks, along with information about the networks these
devices are connecting to. When connecting to a Wi-Fi network for the first time, participants
are given a one-question survey asking them to provide a one-line description for the network.
In the second phase of our study, the participants are given an exit survey, consisting of two
parts: a survey containing personalized questions based on the gathered data, and a general
(non-personalized) survey containing questions about the participant’s privacy stance.
For the remainder of this chapter, we will talk about connections as the actual (transport
layer level-) connections that are made by apps on participants’ devices to a server on the
internet. Associations between a mobile device and a Wi-Fi access point will be referred to
as networks.

6.3.1 Connection monitoring

In the first phase of the experiment, participants are asked to install an Android application
which does not contain any user interface, except for a welcome screen that tells the user to
exit the app and to leave it installed for the duration of the study. This application runs in the
background, collecting information about which Wi-Fi networks the participant connects to,
and which network connections were made by apps on these networks. More specifically, the
data logged for Wi-Fi networks is:

• The network name (SSID)

• Whether the network provides any security in any form (either WEP, WPA, WPA2 or
WPA2-Enterprise)

Note that both WEP and WPA have been proven to have major security weaknesses [Tews
and Beck, 2009], and their use has been discouraged in favor of using a more modern and
secure protocol such as WPA2 for wireless security. For the sake of this study, we do not
differentiate between different types of security. Instead, we will focus on networks without
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any security enabled, for which we are certain that eavesdroppers are able to capture traffic
that is sent in the clear.
Furthermore, for every connection made by any of the apps installed on the phone, the fol-
lowing data is logged:

• The app name (visible to the user) and package name (unique for every app) for the
app making the connection

• Whether this app is launchable by the user, as some (system) apps run in the back-
ground without being visible to the user

• The hostname (or the IP address, in case no hostname can be resolved) and port of the
connection’s endpoint

• A timestamp of when the connection was made

• The Wi-Fi network the device was connected to when the connection was made

Only the connection metadata is recorded; no actual communication (i.e. messages, e-mails
or any other app content) is gathered by the monitoring app.
The data is gathered by periodically reading and parsing Android’s /proc/net/tcp and
/proc/net/tcp6 files and matching the user ID’s for each connection to a corresponding
app on the participant’s device, only while the device is connected to a Wi-Fi network. In
contrast to how the usual sandboxing model of Android is implemented, apps can view the
connections made by other apps by reading these files. Both reading these files and resolv-
ing the user ID’s or the names of the apps do not require any permissions to be requested
by the monitoring app. The only permission that needs to be granted by the user is to view
the names and properties of Wi-Fi connections, a requirement of which the participants are
informed beforehand.
Since the connection monitor is only periodically logging connections (once every 15 min-
utes), some of the connections might be missed. Even though this only applies to connections
that have been opened, closed, and passed their TIME_WAIT timeout of 4 minutes all within
the timeframe of 15 minutes, we take our gathered data to be a lower bound on the actual
number connections made. Since we only use apps, not individual connections, as part of the
study, this should be representative for the actual connections made by the device. Moreover,
logging happens using Android’s AlarmManager, which is set up to log ‘inexactly’, causing
logs to happen together with other jobs (such as another app syncing data). This mitigates the
fact that logging does not happen continuously by making sure it happens at the most ‘busy’
moments.
Apart from logging the aforementioned data, the app also shows a mini-survey whenever the
participant connects to a wireless network they never previously connected to. This survey
asks the participant to provide a one-line description for the network, aiding the participant
in remembering the specific network or situation during the exit survey. An example of such
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a scenario is when the participant is on holiday in an unknown city, and connects to the free
Wi-Fi network in a bar. In this case, he or she can provide a short summary about the place
providing the network (e.g. “small bar with friendly owner next to the train station”), or about
the reason (e.g. “needed to look up the location of a restaurant nearby”).
Participants are given instructions for installing and activating the app on their own personal
devices, and for whitelisting the app from any ‘battery saver’ or ‘memory cleaner’ apps that
might interfere with its operation. The app is distributed through the Google Play Store, with
its availability being limited to only participants of the study. Data collection happens for a
period of 30 days for every participant, with the researchers and recruiters following up with
participants to make sure the app was functioning correctly. This includes making sure the
app is consistently transmitting data, indicating it was not suspended or terminated by any
‘optimizer’ apps, and that the aforementioned whitelisting is done properly.
At the end of the connection monitoring phase, connections made to third-party advertising
servers are excluded from the dataset. The reason for this is that the connection monitor is
only able to view the connections made by other apps, without being able to see the type of
data that is being transmitted. Because of this, some apps might have only sent non-service
specific metadata (such as device identifiers used for advertising). To identify hosts that
are used for serving ads instead of content, we use the hosts file that is part of the popular
AdAway ad-blocker for Android.1 This file contains an exhaustive list of hosts that are used
to serve advertisements to Android apps and to gather analytics data from users of Android
apps. By applying this filter, 10.05% of a total of 5 780 105 connections are removed from
the dataset, which excludes 295 distinct (network,app) pairs (1.23% of a total of 24 030).

6.3.2 Exit survey

The exit survey is provided to the participants at the end of the experiment, and consists of two
parts: a survey containing personalized questions based on the gathered data, and a general
(non-personalized) survey containing questions about the participant’s privacy stance.

6.3.2.1 Personalized questions

The first part is based on the data gathered during the first phase of the experiment. For
every participant, personalized questions are generated based on a subset of both the con-
nections and Wi-Fi networks. These questions (available in Appendix B.2) are designed to
poll the participant about their privacy stance towards the data for a particular app on their
phone being accessed by either the network operator or an eavesdropper (in the case of open
networks). The process of selecting and generating these questions is outlined here.
For every participant, three networks for which connections occurred during the monitoring
phase are selected programmatically. Our program is configured to give a preference to unse-
cured networks, as they allow for extra survey questions (see below). Moreover, the number

1The AdAway hosts file is available at https://adaway.org/hosts.txt.

https://adaway.org/hosts.txt
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of ‘hotspots provided by internet providers’, where an internet provider rolls out a nationwide
network based on Wi-Fi hotspots, is limited to at most one. As hotspots are the most preva-
lent unsecured networks based on number of connections made (see Section 6.6), including
them all while giving preference to unsecured networks would yield a set of responses that is
heavily biased towards these internet service provider (ISP) hotspots. Apart from these two
preferences, networks are selected completely at random.
For each of the selected networks, three apps that made a connection to a first-party server
(i.e., a server not belonging to a third-party advertiser) while being connected to the network
are selected, creating a total of nine (network,app) pairs. Before this selection happens, a
few apps are excluded from the list. These apps include web browsers, system apps, and
other supporting apps (such as Google Play Services), because a participant might be unable
to formulate a meaningful response to posed questions, skewing the results in the process.
Our program is again configured to select apps based on a few preferences. First, if possible,
at least one connection involving a messaging app (such as Facebook Messenger, WhatsApp
or Telegram) is included as part of the questions.2 This allows to compare answers for a
specific app category afterwards. Second, as was the case with the network selection, a pref-
erence is given to insecure3 connections. For insecure (network,app) pairs, one additional
question is added to the survey, asking the participant to what extent they would mind an
eavesdropper being able to see app data (cf. question Q7 in Appendix B.2). Only when no
more ‘insecure pairs’ (apps making an insecure connection on an open network) are available,
secured connections are selected. Apart from these preferences, apps are selected completely
at random.
Note that the previously outlined selection only applies to the questions themselves. Results
listed in later sections will always apply to the full dataset (excluding connections made to
advertisement networks), unless otherwise noted.
For every network, the participant is shown a small one-line summary that they provided
themselves as part of the mini-survey occurring during connection monitoring (see Section
6.3.1), together with the exact time at which the first connection to this network was made.
We display the connection time for the first connection (instead of a later connection) because
this is the time at which the participant filled in the mini-survey, and because this is a con-
nection that was actively initiated by the participant; later connections may have been made
automatically by the device, while the first connection was made with a specific purpose in
mind.

2The messaging apps are selected from the list of top free apps in the Communication category on Google Play
(available at https://play.google.com/store/apps/category/COMMUNICATION/collection/topselling_
free).

3We consider connections made to TCP port 80 to be unencrypted. In principle, an app could create a secure
connection to TCP port 80 either by using HTTPS over this port (instead of the default HTTPS port 443), or it could
implement its own secure protocol on top of unencrypted HTTP connections. Since network connection monitoring
on non-rooted Android devices does not provide access to the actual data on the connection (only the connection’s
meta-information), and because encrypted traffic over TCP port 80 is highly uncommon [Dainotti et al., 2010], this
assumption is deemed to be valid for the purpose of this study.

https://play.google.com/store/apps/category/COMMUNICATION/collection/topselling_free
https://play.google.com/store/apps/category/COMMUNICATION/collection/topselling_free
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Even though all of these questions are based on actual connections made by apps installed
on the participants’ devices, they are not informed about this. Instead, the connections are
presented as hypothetical scenarios, asking only about the extent to which participants would
agree with this data being visible to one of the aforementioned parties. This ensures that
participants’ responses are not influenced by the actual data. The last question for every con-
nection asks about how high the participant would estimate the likelihood that the connection
actually occurred. In addition to this, the very end of the survey contains the same question
in a more direct form, informing the participant about the fact that this connection effectively
happened.
The hostname and address of the endpoint the app connected to are only used for statistics.
We chose not to include this information as part of the survey because a substantial fraction4

of these connections are made to a content delivery network or a cloud provider (e.g. Amazon
Web Services) where the back end for the app is hosted.

6.3.2.2 General privacy questions

The second part of the exit survey assesses the participants’ general privacy stance. For this
purpose, the survey contains questions from a 2014 study conducted by Pew Research, which
polls participants about their privacy and personal information [Pew research center, 2014].
More specifically, questions Q11 and Q12 from the Pew Research study are used to ask the
participant about which privacy-enhancing technologies and habits they know of, and which
ones they have used or carried out before. Some examples of such technologies and are
“using a temporary username or email address”, “encrypting phone calls, text messages or
email” and “clearing cookies and browser history”.
The privacy questionnaire is included in the exit survey instead of being part of the onboard-
ing questionnaire in order to avoid influencing participants’ privacy behavior during the study.
Care is taken to prevent participants from knowing beforehand that the study is about privacy,
instead framing the study as a more general ‘study about wireless networks’. Moreover, ask-
ing the questions about the participants’ privacy stance is deferred until the very end of the
exit questionnaire in order to avoid influencing the answers to questions pertaining to app
data.

6.4 Participants

Participants are recruited through an external recruitment organization, with the aim of having
a participant pool that is as diverse as possible. The participant pool’s diversity is controlled
by technical knowledge, education level and demographics, assessed by the questions in Ap-
pendix B.1. Participants are offered an incentive of e15 for completing the experiment. As

4A cursory search shows that at least 14.92% of the logged connections belong to one of a few popular cloud
providers such as amazonaws.com or akamai.net.

amazonaws.com
akamai.net
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Table 6.1: Participant demographics.

Age group # participants
18 – 25 31
26 – 35 43
36 – 45 18
46 – 55 7
56+ 4
Undisclosed 5

Highest completed education # participants
Master degree or higher 56
Bachelor degree 33
High school degree 17
Did not finish high school 2

explained in the previous section, the study is labeled as a general ‘study about wireless net-
works’ to prevent participants from knowing beforehand that the study is about privacy issues
in wireless networks. All communication with the participants is framed accordingly.

After removing participants that did not complete the full study (either because they did
not keep the monitoring app installed for 30 days or because they didn’t complete the exit
survey), the participant pool contains 108 Belgian people aged from 18 to 65 (a full age
distribution of participants is available in Table 6.1). 30 participants identified as female, and
77 identified as male. Most participants (56) completed a master education or higher (a full
distribution of the participants’ education is available in Table 6.1). When asking to rate their
technical expertise, most participants (44%) say they have a ‘high’ or ‘very high’ knowledge
about how computer networks work, with only 13% rating their knowledge ‘low’ or ‘very
low’. This is coherent with responses for the question “Would you be able to explain what
WEP, WPA and WPA2 are?”, controlled by a question to effectively provide the explanation5,
where 66% of participants indicate they would be able to provide this explanation. We found
a strong correlation between the declared technical expertise and the participants being able
to change a Wi-Fi network’s settings (Spearman’s rs(106) = 0.48, p = 1.418×10−7) and
to participants being able to explain how Wi-Fi security works (Spearman’s rs(106) = 0.60,
p = 7.896×10−12).

For sake of completeness, we also controlled the correlation between the declared expertise
and a more strict validation of the explanations about Wi-Fi security. After adjusting the cate-
gory of 15 participants that did not explain Wi-Fi security entirely correct (e.g. by describing
the encryption standards as only authentication mechanisms), we can still observe the same
trend in the correlation between the declared expertise and whether participants were able to
explain Wi-Fi security or not (Spearman’s rs(106) = 0.46, p = 4.454×10−7).

5We manually checked the explanations of the participants, and found that all of the 71 participants who indicated
they would be able to explain WEP, WPA and WPA2 were able to formulate an answer that is correct or nearly
correct, with 56 of them providing the correct explanation, and the other 15 getting only some details wrong (e.g.,
describing the encryption standards as only authentication mechanisms).
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Figure 6.1: Number of Wi-Fi networks connected to by participants during the 30-day study. On
average, participants connected to 8 networks, with the vast majority of them (61%) connecting
to anywhere between 4-8 networks.

In conclusion, the participant pool is skewed towards relatively young (18-35 years), male,
highly educated people with a high expertise in computer networks. In Section 6.6, the impact
of this bias on the results is discussed in more detail.

6.5 Results

During the 30-day connection monitoring study, users connected to an average of 8.02 Wi-
Fi networks, with the vast majority of users (61%) connecting to anywhere between 4-8
networks (see Figure 6.1). This shows a larger than 100% increase compared to the study
performed on notebooks instead of smartphones by Klasnja et al. in 2009, where the aver-
age user connected to 4 networks during a period of 4 weeks. 310 of the 866 networks that
devices connected to (35.8%) did not have any security (in the form of WEP, WPA, WPA2
or WPA2-enterprise) enabled. All of the participants connected to at least one secured net-
work, which shows an improvement in security compared to Klasnja’s study in 2009, where
4 out of 11 participants only connected to unsecured networks. Even so, as mentioned in
Section 6.3.1, a network having security enabled does not necessarily mean the network is
secure. Indeed, WEP and WPA have been proven to have major security weaknesses. A
Pearson correlation test did not show any statistically significant correlation between the ex-
pertise of the participants and the number of unsecured networks they connected to during
the experiment. Furthermore, our results show there is no statistically significant correlation
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Table 6.2: Statistics for the collected data.

Number of. . . Amount
Participants 108
Wi-Fi networks 866
Open Wi-Fi networks 310 (35.8%)
Distinct apps 1667
Connections 5 330 660
Insecure connections 68 8930 (12.9%)
Distinct (network,app) connection pairs 23 735

26.1

25

15

13.1

8.5

6.5
5.8

Commercial (e.g. cafe)

Employer

Friend/family

Other
Other company

Own home network

Public (e.g. museum)

%

%

%
%

%

%

%

Figure 6.2: Distribution of the different types of networks in the survey. Excluded from this
distribution are 51 networks having the “ISP hotspot” type, as these were purposefully limited to
at most one (see Section 6.3.2 for more information). The two most prevalent types of networks
that were part of the questionnaire were commercially offered networks and own home routers,
together accounting for just over 50% of all encountered networks.

between participants’ privacy stances6 and the number of unsecured networks they connected
to during the experiment. A general overview of the collected data is available in Table 6.2.

After accounting for the fact that the number of ISP hotspots was artificially limited in the
questionnaire (by removing these 51 networks from the list of 311 networks participants were
surveyed for), the two most prevalent types of networks that were part of the questionnaire
were commercially offered Wi-Fi networks (belonging to e.g. a cafe or a supermarket) and
own home routers, together accounting for just over 50% of all encountered networks (see
Figure 6.2).

6The privacy stance of users is measured by the number of positive answers to the questions defined in [Pew
research center, 2014].
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Figure 6.3: Number of apps on participants’ phones making a connection to an external server
during the 30-day study, grouped in bins of 10. The majority of devices (60%) have between 30
and 70 apps making a connection to the internet over this period.

Participants indicated on multiple occasions that they were unsure about the identity of net-
works they connected to, indicating this either as part of the general survey feedback (“My
responses on [network X] are not reliable, as I don’t know this network”) or at the moment
they are connecting to the network (by giving a one-line summary along the lines of “No
idea”, “Unknown network” or “Don’t know this”).

The participants’ devices had an average of 65.44 apps making a connection to an exter-
nal server during the experiment, with most devices (60%) having between 30 and 70 apps
connecting over this period (see Figure 6.3).

Participants were often surprised about connections being made by apps, indicating that they
were unaware about 345 of 928 (38%) connections that were surfaced as part of the exit sur-
vey. Excluding messaging apps (where participants indicated awareness for 72% of the con-
nections being made), this number grows to 264 out of 629 apps (or 42%). This also showed
in the general feedback given at the end of the study, where two participants talked about a
mismatch in privacy expectations and actual behavior. One participant explicitly noted “It
surprises me that Skype transmitted data, as I did not configure the app yet”, while another
user’s privacy expectations did not align with what the app was actually doing, as indicated
by their feedback “When surfing anonymously, the ‘incognito’ mode of Google Chrome that
I use regularly was seemingly not taken into account”. Another participant explicitly indi-
cated that the survey caused them to take action, providing as feedback: “Interesting survey.
I’ll certainly remove FileExpert from my device now.”. In this regard, we found a medium
correlation between the declared expertise of participants and how aware they were about the
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Figure 6.4: Number of times participants indicated to be aware of connections being made by
the apps according to their expertise in computer networks. Participants with a higher expertise
indicated to be more aware on average about the connections made by the apps installed on their
devices.

connections being made (Pearson’s r(106) = 0.34, p = 2.09×10−4). Figure 6.4 shows the
distribution of the awareness count depending on the expertise of the participants.
Of the 321 insecure connection pairs ((network,app) pairs containing both an insecure Wi-
Fi network and an unencrypted connection made by the app), participants responded for 292
cases (91%) that they would not want a person in the neighborhood of the Wi-Fi network
being able to see the data sent over the connection, stating they either disagree or strongly
disagree with the statement “A random person in the neighborhood of <network name> (e.g.
someone standing on the street close to the building) is permitted to see all information (see
previous question) of app <appname>”. This could indicate that participants were not aware
about the security risks inherent to connecting to open networks, or that they were unaware
about the app making an insecure connection7 on this network.
Even when asked about the extent to which the network owner would be permitted to see data
transmitted by the apps that actually transmitted data over the network, 655 out of 928 con-
nection pairs (71%) were deemed by participants to contain data that would be too sensitive
for the network owner, indicated by answering that they ‘disagree’ or ‘strongly disagree’ to
the statement “The owner of <network name> is permitted to see all information (see previ-
ous question) of app <appname>”. This number even increases to 88% if we only consider
the 191 hotspot networks provided by ISP’s, which we hypothesize could be the case because
participants may be considering these hotspots as belonging to an unknown person’s home

7Remember that connections made to advertisement networks were not used for any survey questions, as ex-
plained in Section 6.3.1.
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network. The data analysis showed a small correlation between the expertise of participants
in computer networks and their concern about the network owner seeing the transmitted data
(Pearson’s r(926) = 0.07, p = 0.04).
We also analyzed the effect of the type of data (username, password and data such as instant
messages, emails or weather information) on the privacy concern level of participants in
our study. To measure participant’s privacy concern, we use a 5-point Likert scale for the
security concern rating, where 1 corresponds to ‘Not at all concerned’, and 5 corresponds
to ‘Extremely concerned’. The Shapiro-Wilk and Barlett’s tests show that the data violates
the normality and homogeneity of variance requirements to perform an ANOVA test. Thus,
in this case we use the Friedman non-parametric test for the comparison among the groups
(considering that one participant contributes to the sample with multiple records, we use a
within subjects design). The Friedman test reveals a significant effect of the type of data
on the privacy concern of the participants when using a mobile app (χ2(3) = 240.5, p <

2.2×10−16). A post-hoc test using Mann-Whitney tests with Bonferroni correction shows
significant differences between privacy concerns for the username and data, and username
and password. Participants rated the privacy concern for the username the lowest (avg= 1.48,
SD = 1.06), followed by the password (avg = 2.21, SD = 1.61), and gave the data the highest
privacy concern rating (avg = 2.30, SD = 1.43).
Given the wide variety of applications that made a connection from the smartphones of the
participants, we performed the same analysis considering only applications in the Commu-
nication category (i.e. messaging apps). As explained in Section 6.3.2, we selected at least
one application of this type (if one was available) when generating the survey questions.
The results of the analysis follow the same trend as those observed for the full dataset: the
Friedman test reveals a significant effect of the type of data on the privacy concern of the
participants (χ2(3) = 241.12, p < 2.2×10−16). A post-hoc test using Mann-Whitney tests
with Bonferroni correction again shows significant differences between privacy concerns for
the username and data, and username and password, with similar differences (username:
avg = 1.53, SD = 1.03, password: avg = 2.38, SD = 1.61, data: avg = 2.63, SD = 1.50).

6.6 Discussion

Our results show some interesting trends, both in terms of data gathered about participants’
Wi-Fi usage, as in terms of their privacy and security awareness and concerns. This section
provides some general remarks and further insights derived from the results.
First, this research was purposefully limited to connections on Wi-Fi networks because of
the many inherent risks involved: these networks are often operated by small businesses,
and security can be lacking. However, as mobile data is getting cheaper, more smartphone
users are using their cellular network to connect to the internet. This is also indicated by the
study’s participants, with comments such as “I’m connecting to (public) wifi predominantly
when I’m abroad, as I have a good data subscription domestically and I trust my mobile
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provider more than I trust public networks.” and “This research was about public wifi. I still
use this, but not as much as I used to when I had a tablet that only had wifi. Now that I have
a data subscription I use [Wi-Fi networks] a lot less. The security of mobile data connections
seems more relevant to me now”. Even so, our results show that mobile device users in 2017
are still relying on Wi-Fi for a significant amount of their internet access, with the majority
connecting to 4-8 different Wi-Fi networks in 30 days. Adding to this is that a large part of
Wi-Fi usage can be attributed to ISP hotspot networks, together accounting for over 94% of
all connection pairs that were logged by the monitoring app.8

Important to note is that over one third (35.80%) of Wi-Fi networks participants connected
to were insecure, allowing eavesdroppers to monitor metadata about network connections
and – when the connections themselves are unencrypted – their actual data. Moreover, it
facilitates malicious actors into mounting so-called “Evil Twin” attacks, where an existing
(unsecured) network in the victim’s preferred network list is spoofed by an attacker, causing
the victim’s device to automatically connect to the malicious network [Roth et al., 2008].
Combined with the fact that 12.92% of logged connections (excluding servers of advertise-
ment agencies) were unencrypted9, this presents a real security risk. When considering all
networks (even those filtered out for the survey), the biggest offenders seem to be commercial
entities (35.75% of open networks) and hotspots provided by the ISP of the home network
(23.46% of open networks). This indicates that even in 2017, Wi-Fi network security and
privacy should still be considered an important topic in research and in the industry.

Apart from using secure connections for their applications, it is also possible for smartphone
users to protect against traffic interception attacks. However, as we will discuss in Chapter 8,
VPN’s come with their own set of security considerations. While we do expect a substantial
number of users to have a VPN installed on their corporate devices, we do not expect the
average user to be technically savvy enough to use a VPN service on their own personal
devices (which were used as part of this study). It would be interesting to perform a future
study, similar to this one, that looks at the number of times a VPN was used to protect any
insecure connections made by the device, and how trustworthy the VPN provider is.

As is clear from Section 6.4, the participant pool is skewed towards highly educated people
with a high expertise10 in computer networks. This leads to the expectation of participants
being more aware about the apps operating on their devices than the general public, and to
their expertise in computer networks having a positive impact on their security habits. Our
analysis does indeed show that participants reporting a high expertise in computer networks
are slightly more aware about connections being made, confirming expectations. Nonethe-

8Because connections are only logged periodically, they provide only a representative subset of all connections
made by the device. See Section 6.3.1 for more information on why this is still relevant.

9As explained in Section 6.3.2, we consider connections to HTTP port 80 to be insecure for the purpose of this
study.

10Even though this expertise is self-reported, it was cross-checked with their ability to explain network security.
See Section 6.4 for more information.
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Figure 6.5: Number of privacy-enhancing tools and methods used by participants of the study.
The majority of participants (53.70%) had used between 6 and 9 of these tools and methods in
the past.

less, even participants reporting a ‘high’ or ‘very high’ expertise in computer networks were
still unaware about 36.70% of connections made by apps on their device.
More surprising is that this expertise in computer networks does not seem to translate to better
security practices: having this expertise did not prevent participants from connecting to as
many unsecured Wi-Fi networks as less technically experienced participants. This confirms
prior results from Friedman et al. [Friedman et al., 2002], who found that high-technology
participants did not necessarily have better security habits than those with a less technological
backgound.
Similarly, the privacy stance of participants (measured by usage of privacy-enhancing tools
used and actions taken in the past, depicted in Figure 6.5) did not have any significant influ-
ence on the number of unsecured Wi-Fi networks they connected to. This indicates that, while
users are prepared to install or use privacy-enhancing tools in a one time set-it-and-forget-it
manner, they often lack the time or motivation to be continually aware about the privacy and
security risks of using public Wi-Fi networks. This is in line with results from Dourish et
al. [Dourish et al., 2004] and Klasnja et al. [Klasnja et al., 2009], where it is discussed that
task-oriented users do not generally think about these issues when they are going about their
work. Rather, they choose to delegate responsibility for security to tools, other individuals or
institutions.
This mismatch in privacy stance (i.e. the number of privacy-enhancing tools used in the past)
and actual current behavior directly translates to participants’ perceptions about transmitted
data: when confronted with specific scenarios about unencrypted connections that occurred
on insecure networks (worded as a hypothetical scenario, but in reality corresponding to ac-



6.7 Conclusion 99

tual insecure and unencrypted connections that occurred on the participant’s device), 91% of
participants indicated being worried about the corresponding data being available to eaves-
droppers. Furthermore, participants are most concerned about the privacy of actual app data,
even more so than they are about the privacy about the app’s password. This result seems to
confirm the Privacy Paradox, as participants are transmitting a significantly larger amount of
data over insecure channels than they intend to.
It would be interesting to see whether the types of apps that are used in more insecure sce-
narios handle less privacy-sensitive data than those used in high-security scenarios. We did
not explicitly label apps in our dataset as having access to ‘privacy-sensitive’ data, as doing
so would be inherently subjective, depending on for example the cultural background of the
researchers. While the privacy sensitivity of the data itself was not the focus of this research,
we consider it an interesting area for future work to use the permission accesses granted to
apps as a proxy for the data they are able to access. This would allow to investigate possi-
ble correlations between the amount of sensitive data an app handles, and the security of the
app’s connections.
Asking the participants about their privacy-sensitiveness to the different types of information
that could be transmitted by an app beforehand pushed them to think about what this data
could comprise before answering questions about network owners or eavesdroppers having
access to this data. Together with the previous results, this demonstrates that using very
specific, personalized scenarios (instead of more general ones) might prove to work better to
inform mobile device users about security and privacy issues.

6.7 Conclusion

In this work, we sought to understand mobile users’ privacy and security assumptions when
connecting to Wi-Fi networks. For this purpose, we conducted a study with 108 participants,
monitoring the Wi-Fi networks they connected to and the connections made by apps on their
device for a period of 30 days. After the monitoring phase, we asked them a number of
questions about the gathered data, polling for both awareness and privacy sensitiveness on
the data that was sent. With this, we assessed to what extent their privacy and security stances
corresponded with actual behavior.
Despite the trend of mobile users using cellular data for internet access, our results show that
even in 2017 usage of Wi-Fi networks is very popular. There is even a noticeable increase
in Wi-Fi popularity compared to 2009, with users on average connecting to 8 different Wi-
Fi networks in a 30-day period. Coming back to research question RQ2, over one third of
these networks, and 13% of connections made by apps on user’s devices, are insecure, which
poses a major security risk to the average mobile device user. Moreover, touching on research
question RQ3, 38% of connections are made by apps without the user being aware.
We show that, even though participants with a higher expertise in computer networks are
more likely to be aware about the connections made by apps on their device, this does not
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translate to better security practices: technologically savvy participants are just as likely to
connect to insecure networks as people who do not have a high expertise in computer net-
works (providing our answer to the second part of research question RQ6). Similarly, the
usage of privacy enhancing technologies (such as a browser plugin providing tracking pro-
tection) in the past does not have a significant impact on security behavior on Wi-Fi networks.
This confirms previous studies which state that users are inclined to see security as a set-it-
and-forget-it problem, where they delegate security to a tool or a different entity, not thinking
about it when trying to accomplish a specific task later on. It also leads us to conclude that
research question RQ4 should be answered negatively.
This is a problem that is acknowledged by our participants: for 91% of data that was found
to be transmitted in an insecure fashion on their devices, participants indicated they were
worried about eavesdroppers being able to view this data. We confirm the Privacy Paradox by
showing that participants are transmitting a significantly larger amount of data over insecure
channels than they intend to, noting that they were unaware about 38% of these connections
being made. Furthermore, we expect that there are large benefits in using very specific,
personalized scenarios to inform mobile device users about security and privacy issues.
Based on our results, we will provide recommendations to network providers, developers and
users in Chapter 8.
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7.1 Introduction

Apart from the security-related privacy issues that we studied awareness for in the previous
chapter, privacy sensitive information can also be collected in a legitimate manner by apps
on users’ devices. For example, while the SASQUATCH system described in Chapter 5 used
peculiarities in the technical implementation of protocols in order to guess the past locations
of passers-by, apps on users’ devices are able to request direct access to the user’s location
and collect this information with the user’s consent. In this chapter, we study how users make
decisions during the lifecycle of an app on their smartphones, including deciding to install
an app, making choices about whether or not to give an app access to personal data, and
potentially uninstalling the app.

There are many factors that could commingle to bring users to a decision. Part of the thinking
around these decisions may involve reasons related to privacy, such as sensitivity to sharing
particular types of data, trust in the developer, understanding the value added when personal
data is shared, and many more [Harbach et al., 2014; Harris et al., 2016, 2015; Lin et al.,
2014]. In order for an app to access personal data, both Android and iOS adopt a runtime
permission model, which allows users to decide whether to grant a given permission request
at the time when it is first needed within the app. In this chapter we explore users’ rationales
for decision making during these three parts of an app’s lifecycle, but with a focus on how
users decide about permissions. Importantly, we study users’ rationales at the moment they
make their decision.

A large body of work has focused on understanding users’ attitudes, comfort and their com-
prehension about permissions [Almuhimedi et al., 2015; Balebako et al., 2013; Felt et al.,
2012c; Kelley et al., 2012]. However, almost all prior studies were conducted by using the
permission model in which users had to accept or deny all the permissions requested by an
app at installation time, without the possibility to grant permissions individually (for ver-
sions of Android before 6.0). A series of notable findings by Felt et al. [Felt et al., 2012c]
and Kelley et al. [Kelley et al., 2012] showed that few users pay attention to install-time
permission dialogs and even fewer understand them. Furthermore, results from other stud-
ies [Almuhimedi et al., 2015; Balebako et al., 2013; Felt et al., 2012c] indicated that users are
often unaware of many permissions they have already granted to their apps. Subsequently,
researchers started to advocate for a more contextualized permission model that would allow
users to control permissions on a more granular level [Felt et al., 2012a; Nissenbaum, 2004;
Wijesekera et al., 2015].

Android adopted the runtime permission model starting in version 6.0. There are at least
two reasons why runtime dialogs have the potential to improve decision making by providing
context. The first is that they often (but not always) clarify to the user why a permission is
needed by linking it to the functionality that is triggered, because permissions are requested at
the moment the data access is needed. The second is that developers can enrich the informa-
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tion shown in the permission request by providing their rationale1, which can be considered
as additional contextual information. While some developers take advantage of this, many
still do not.

Given that most prior results were obtained for the old permission model, it is unclear to
what extent they are still applicable to the current runtime model. In this work, we conduct
the first study, to the best of our knowledge, that examines the reasons why Android users
install or remove an app at the time this happens, and the motivation behind granting or
denying a permission right after users make their choice. We are also able to examine users’
reasons for each permission group, thus exploring if their reasoning differs when deciding on
location, microphone, contacts, and other types of personal data. We capture users’ comfort
level with their choice both at runtime as well as after the study, which allows us to compare
their comfort levels with their decisions both in-context as well as after the fact. Finally, we
explore whether other factors, such as demographics, may influence user decision making.
Although there exist prior works that studied users’ permission choices with the runtime
model [Lin et al., 2014; Liu et al., 2016, 2014; Wijesekera et al., 2017], their goals were not
focused on users’ rationales.

In order to answer these questions, we employed an open-source Android app called “Paco”
(Personal Analytics Companion) [Evans, 2016], which is a platform for ESM (Experience
Sampling Method) studies, which is a method that has been widely used for mobile pri-
vacy studies in the past [Anthony et al., 2007]. We extended Paco to be able to query users
about the reasons behind the decisions they make on their Android device related to app in-
stalls, permission decisions, and uninstalling apps, and made these extensions available to the
broader research community. Paco allows us to capture the rationale behind users’ actions
in-the-moment, when it is fresh in their minds, therefore preserving as much of the actual
context as possible. The 157 participants in our study installed Paco on their personal phones
and used it for a 6-week period without any interaction with us. We collected over a thousand
permission decisions and the associated reasons. Our study is the first, to the best of our
knowledge, to collect such data in the wild.

Our main findings include the following. Many of our participants, when deciding about
permissions, are indeed thinking about whether or not the permission is needed for the app
or for a specific functionality, and whether the app “should” need it. This suggests that the
context provided via runtime permissions appears to be helping users make decisions. Our
participants accepted 84% of all permission requests, and among those they indicated they
were comfortable (right after deciding) with their choice 90% of the time. The remaining
10% of grant decisions have a low comfort score, which suggests that a form of reluctance
can occur when granting permissions. When we asked participants at the end of the six week
period about some of their decisions, participants were not at all comfortable with 29% of
them. We also noticed that the permission denial rates vary across different permissions.

1https://developer.android.com/training/permissions/requesting.html#perm-request

https://developer.android.com/training/permissions/requesting.html#perm-request
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For example, microphone permission requests were denied almost twice as often as storage
permission requests.
We identify decision rationales for 4 events types (app installation/removal, permission grant/-
denial) from Android users and rank them according to participant feedback. One of the most
common reasons for denying permissions was that users know they can change it later. We
further break down the reasons for denials per permission type and find that the dominant
rationale for each permission type can differ – sometimes significantly – across permission
types.
The remainder of this chapter is organized as follows. We discuss the related work in Sec-
tion 7.2, we introduce the methodology of our study in Section 7.3, and we detail the im-
plementation changes to the Paco app in Section 7.4. We present the results about users’
rationale for app installs and removals in Section 7.5, and we discuss the findings about per-
mission grant and deny decisions in Section 7.6.

7.2 Related Work

Existing research has explored the space of Android permissions and privacy from two per-
spectives, that of users and developers.
From the user perspective, research has shown that few people actually read application per-
mission requests and even fewer comprehend them [Felt et al., 2012c; Kelley et al., 2012].
In fact, users were often surprised by the abilities of background applications to collect
data [Jung et al., 2012; Thompson et al., 2013], and they were concerned when presented
with possible risks associated with permissions [Felt et al., 2012b].
To enhance the user experience, some have suggested providing users with more privacy in-
formation and personal examples to improve comprehension [Harbach et al., 2014; Kelley
et al., 2013]. Researchers have designed systems to identify privacy violations and to re-
duce them by recommending applications based on users’ security concerns [Almohri et al.,
2014; Enck et al., 2010; Gibler et al., 2012; Hornyack et al., 2011; Klieber et al., 2014; Xu
et al., 2012; Zhang et al., 2013; Zhu et al., 2014]. Resource requests have been categorized
into benign and dangerous requests, so that only the dangerous ones require user approval,
thereby reducing the number of privacy/security decisions a user needs to take [Felt et al.,
2012a]. Some studies employed crowdsourcing to learn user expectations and to create pri-
vacy models [Lin et al., 2012], and others explored creating personalized assistants [Liu et al.,
2016].
The research focused on developer behavior has shown that many developers are not deeply
knowledgeable about permissions and often misuse them [Stevens et al., 2013]. Intentionally
or unintentionally, they are often making mistakes [Shklovski et al., 2014; Smith, 2016] and
are not following the principle of least privilege [Wei et al., 2012]. To identify this overuse
behavior, tools have been developed that employ natural language processing of application
descriptions [Pandita et al., 2013], and static and dynamic analysis of Android apps [Au et al.,
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2012; Bodden, 2013; Felt et al., 2011; Spreitzenbarth et al., 2013]. Further research efforts
[Enck et al., 2010; Gorla et al., 2014; Sarma et al., 2012] that design methods to generally
identify malicious applications have leveraged permission overuse assessments.
To improve the situation, researchers have suggested reorganizing the permission model with
better definitions and hierarchical breakdowns [Barrera et al., 2010], or adding fine-grained
access control for better policing [Bugiel et al., 2013]. A recent study by Micinski et al.
suggests there should be a difference between permission accesses that happen in the back-
ground and those that happen interactively (where the access directly corresponds to a user
interaction, such as when the user imports their contacts). While the former should be granted
explicitly (and regularly notified to the user), the latter should be avoided to prevent user fa-
tigue [Micinski et al., 2017]. Tools have been developed that dynamically block runtime
permission requests [Shebaro et al., 2014], or that give users the ability to deny data to appli-
cations or to substitute user data with fake data [Hornyack et al., 2011].
We focus on three existing pieces of research that are closest to our work. In their 2013 work
on Android install-time dialogs, Kelley et al. [Kelley et al., 2013] examined the extent to
which the design and type of information displayed in the dialogs helps users to choose which
apps to install. Both our study and theirs ask participants about factors (such as developer,
popularity, reviews, etc.) that influence their choice of which app to install. Interestingly, we
find different results in terms of the ranking of factors (as shown later in Section 7.5.2). We
believe this may come from the different methods of testing, as well as the pre-Marshmallow2

(theirs) versus post-Marshmallow (ours) permission model. A key difference between their
study and ours is that they asked users to choose between pairs of apps for a friend (hypothet-
ical scenario), whereas in our study users choose their own apps, in the wild, on their own
devices.
Wijesekera et al. explored permissions in Android in two different studies [Wijesekera et al.,
2015, 2017]. These studies explored how a contextualized permission model, based on the
principle of Contextual Integrity [Nissenbaum, 2004] and work by Felt et al. [Felt et al.,
2012a], could improve dynamic permission granting. Both these studies rely on a custom
version of Android 5.1.1 (pre-Marshmallow) as the study instrument, that logs every sen-
sitive API access that requires a permission. Their first study [Wijesekera et al., 2015] in
2015 measures how often and under what circumstances smartphone applications access pro-
tected resources regulated by permissions. They collected data on phones of 36 people about
permission accesses when they happened. At the end of the week, they interviewed people,
showed them screenshots of when data had been collected, and asked them if they would have
liked to have prevented it (if they had been given the choice). They found that participants
wanted to block 1/3 of permission accesses, citing privacy concerns over the data and lack of
context about why the app needed the permission to perform its task.
In [Wijesekera et al., 2017] the authors design a classifier to predict users permission deci-
sions. The prediction takes into account context and generates predictions not only on-first-

2“Marshmallow” refers to Android version 6.0
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use, but also on subsequent uses when the context may be different. They postulate that users
may not always elect to make the same decision about a permission each time it is used.
They also make predictions as to when a user might change their mind, so that they do not
ask on each use, but only on key ones where a user’s decision may change (e.g. because of
a different context). They used their predictor in a user study with 131 people and showed
that they can do a far more accurate job of capturing user preferences this way than with
the ask-on-first-use model. (“Ask-on-first-use” corresponds to runtime dialogs in versions of
Android 6.0 or higher.) This work is very different from ours in that we do not build predic-
tive models, and we are focused on understanding user rationales for decision making in the
“ask-on-first-use” model. Our study also differs from all of these previous works in that we
capture data “in the wild”, meaning our participants used their own phones, their own choice
of apps and interacted with their apps whenever they normally would.

7.3 Methodology

To capture users’ reasoning when making privacy impacting decisions at the moment these
are occurring, we use the Experience Sampling Method (ESM) [Hormuth, 1986; Larson and
Csikszentmihalyi, 1983]. This method consists of asking individuals to provide systematic
self-reports about their experience at random occasions during the day without the individual
expecting it, often aiming to capture candid, in-the-moment experiences, and has been widely
used for mobile privacy studies in the past [Anthony et al., 2007]. Our methodology consists
of surveying users at the time they are making privacy impacting decisions, by surfacing a
survey when the participants install or remove an app, or when they change an app’s per-
missions. We use the Android app Paco [Evans, 2016], which is part of an existing platform
for ESM studies, and which can be downloaded from the Google Play store, as our study
instrument.
In addition to the in-situ questionnaires, we ask participants to fill out an exit survey. This
exit survey was used to gauge participants’ privacy behaviors and technology savviness, and
their awareness about permissions granted to apps on their devices. It also assesses how
comfortable participants are with the permission decisions they made in the past.
Similarly to Wijesekera et al. [Wijesekera et al., 2015], and our own study in the previous
chapter, we avoid priming participants beforehand by publicizing the experiment as a study
on app interactions in order to limit response bias. No mention of privacy is made at any
point during the study, except in the exit survey.

7.3.1 Designing the Surveys

We now describe the process we followed to design our in-situ and exit surveys (provided in
full in Appendix C).
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7.3.1.1 In-Situ Surveys

The in-situ surveys are surfaced when one of the following four events occurs: the participant
installs an app, removes an app, grants a permission to an app, or denies a permission to
an app. In each of these cases, the participant is asked a question about his/her rationale
for performing the action. In two cases, the participant receives a second question. After
permission grant events, our second question aims to assess the participant’s reluctance when
allowing the permission, by asking to what extent they agree with the statement “I don’t
mind giving <app> access to my <permission>”. App installation events also cause a second
question to surface (after asking about rationales) that asks about the factors – such as app
rating or popularity – that influenced their decision to install the app.
To capture the participant’s decision rationales, we designed multiple-choice questions with
the option to select multiple reasons, and with an additional “Other” choice allowing a free-
form response. To ensure we have an exhaustive list of possible reasons, we first performed
a short pre-study through the Google Surveys platform (GS), formerly known as Google
Consumer Surveys (GCS). For each of the in-situ questions, we ask a random sample of 1000
participants about their reasons for performing a recent action. For instance, we asked “The
last time you <did X>, what were your reasons for <doing X>?”. We coded the different
responses as follows. Initially two coders each coded half the responses and then cross-
checked their responses. With over 90% overlap, they then independently completed the rest.
The third coder independently coded responses using labels from the first two. Complete
agreement was reached by all coders. Finally, we grouped answers with similar labels, and
extracted the most representative answer from each of the top-10 largest groups.
Figure 7.1(a) shows how a participant is alerted that there is a question to answer, and Fig-
ure 7.1(b) shows a sample question for a permission grant request. In order to remove posi-
tional bias in the answers, we randomized the order in which the answer options were shown
- with the exception of the “Other” option, which is always placed last. In order to reduce
participants’ response fatigue, we limit the number of questions that are surfaced to at most
3 permission events, 2 app install events, and 1 app removal event per day, with a maximum
total of 5 events per day.

7.3.1.2 Exit survey

In the exit survey, we question participants about their privacy behaviors, by asking about
which privacy-enhancing practices they have employed in the past (compiled based on a
Pew research survey [Madden and Rainie, 2015]). Additionally, we ask participants to rate
themselves on a 5-point scale from early to late adopters of new technology. Apart from these
general questions, the exit survey also contains a personalized component. In this part, we ask
participants about how comfortable they are with certain apps on their devices having access
to a specific permission. These <app, permission> pairs are generated for each participant
individually, by inspecting what permissions have already been granted for apps on their



7.3 Methodology 109

(a) Notification informing that a survey is available. (b) Survey question soliciting the reasons for granting
the Storage permission to an app.

Figure 7.1: Example of an in-situ survey in the Paco app.

devices. These apps are not limited to the ones for which a permission is granted or denied
during our study; they also include apps that were installed prior to enrolling in our study.

The personalized questions are worded as hypothetical scenarios, asking for example “How
comfortable would you be with the <app name> knowing who is calling you”. Moreover, the
questions do not directly ask about the permissions, but rather about specific data access that
this permission entails. For example, instead of asking about how comfortable the participant
is with an app having storage access, we ask how comfortable they would be with the app
being able to access pictures on their device. When answering such a question, participants
are not informed that we selected a <app, permission> pair that exists on their devices. For
each of the four permissions – Location, Contacts, Phone and Storage – we select a random
app for which the permission was enabled (if available), and generate the corresponding
question.
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7.3.2 Recruitment and Incentives

Participants were recruited via our company’s external U.S.-wide participant database and
were sent a screening survey via email. We screened for participants using a device running
Android version 6.0 or later, with their device locale set to “English - United States”. (The
latter requirement is needed because of the way we implemented our changes to Paco, see
Section 7.4.2.) Participant diversity is controlled for gender, age, education and employment.
Participant demographics are available in Table 7.1. After the recruitment phase, participants
were informed that they would be required to install the Paco app. They were made aware
about the fact that this app monitors their device usage to show survey questions, and were
shown a list of all the data collected by Paco. Participants were told that for each of the 6
weeks they participate in our study, they would earn $10 and that submitting the exit survey
would earn them an additional $20.
We recruited a total of 193 participants. Of these 193, 34 never finished the setup process and
2 voluntarily dropped out, so they are not included. The other 157 participated for the entire
6 weeks. Thirteen out of the 157 participants did not answer the exit survey, and have been
excluded from parts of our analysis relying on exit survey data.

7.3.3 Ethical Considerations

In compliance with ethical training guidelines at Google (where this study was performed),
we ensured that participants’ anonymity and privacy were respected. We thus carried out
the following. First, all researchers that participated in this work have been trained in ethi-
cal user research prior to this study. Second, there was an informed consent process where
the participants were informed of all the types of data being collected before they start the
experiment. Third, we deleted all the participants’ personally identifiable information after
the data collection period and thus did not use any of it in our analysis. Fourth, respondents
had the option to exit the study at any point in time. Fifth, only the data from participants
who completed the entire 6 week study is used in our analysis (data from the 2 who stopped
participating is discarded). Lastly, as will be explained in Section 7.4, we implemented end-
to-end encryption on top of Paco to make sure that all gathered data would be available only
to the participants and the experiment organizers (and not, for example, to operators of the
Paco service or other parties).

7.3.4 Limitations

Our analysis is based on participant self-report data, which is subject to biases such as social
desirability and recall. Participation in our study requires installing our study instrument
(Paco) and enabling accessibility and app usage permissions (see Section 7.4.2), hence our
results could be skewed towards participants willing to do so; those unwilling to do so may
have characteristics we did not discover. We try to limit such an effect by recruiting a diverse
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Table 7.1: Participant demographics

Gender Participants Age Participants

Male 79 18 - 23 29
Female 78 24 - 30 44

31 - 40 35
41 - 50 23
51 or over 26

Education Participants

Up to High school 15
Some college (1-4 years, no degree) 40
Associate’s degree 28
Professional school degree 5
Bachelor’s degree 51
Graduate Degree 18

Employment Participants
Arts & Entertainment 8
Business & Finance 6
Education 8
Engineering 12
Health Care 12
Human Resources 2
Information Technology 14
Management 19
Miscellaneous 15
Religion 3
Retail & Sales 17
Retired 5
Self-Employed 6
Student 18
Undisclosed 5
Unemployed 7

participant pool (controlled for gender, age, education, and employment) and by explaining
upfront about all the types of data collected. Only 2 participants, out of 193, voluntarily
dropped out of the experiment expressing concerns around the accessibility permission usage,
so the effect is indeed limited. In order to limit the leading effect of our in-situ questionnaire
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towards participants’ future actions on permission decisions or app installs, we imposed upper
thresholds for the number of such questionnaires, which averaged at only 30 surveyed events
per user over a 6-week period.

7.4 Technical implementation

Our main survey instrument, the Paco app [Evans, 2016], acts as a behavioral research plat-
form, which allows researchers to survey participants either at predefined intervals or when-
ever a specific action (such as an app install or permission-related decision) occurs. The
advantage of using such an app is that we do not require participants to possess a rooted
Android device.

Since Paco did not provide triggers for app installation or permission change events at the
time of our study, we extended its code to provide such functionality. Moreover, to ensure
that the participants’ data is protected while in transit between the device and our servers,
we also added end-to-end encryption to Paco. All code changes to Paco were submitted and
accepted to the main project, and are now available to other researchers and the general public
(Paco GitHub at https://github.com/google/paco/).

In addition to extending the Paco platform itself, we also modify the way in which surveys
are shown to the participants by making use of Paco’s scripting functionality. We discuss
these implementations below.

7.4.1 App Installation and Removal Triggers

To identify the moments when a participant installed a new app, or when they removed an app
from their phone, we listen for ACTION_PACKAGE_ADDED and ACTION_PACKAGE_REMOVED in-
tents broadcast by the Android system’s package installer, while making sure that these events
are not part of a package update (by checking whether the EXTRA_REPLACING parameter is
set). For both events, we store both the package name of the app and the user-friendly app
name (henceforth referred to as app name). The package name is a text string unique to each
application on the Google Play store, and is useful for our analysis, whereas the app names
are more identifiable and are used in generating survey questions (see Section 7.4.3). An
example package name is com.rovio.angrybirds and its app name is Angry Birds.

In case of an app installation event, the app name is available by querying the Android’s
package manager using the package name of the app. Since information about removed
packages is no longer available in the package manager after an app is removed, we also
manage a separate cache of package names and their corresponding app names. This allows
us to access app names even after an app has been removed.

https://github.com/google/paco/
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7.4.2 Permission Change Triggers

For permission change events, no intent is broadcast by the Android system, requiring us
to monitor these permission changes ourselves. One obvious way to perform this would
consist in periodically checking which permissions are granted to each of the apps installed
on the user’s phone, and looking for any changes in this information. This could be done
by polling the Android package manager’s getInstalledPackages() method and passing
the GET_PERMISSIONS flag. However, a problem with this approach is that we would only
detect permission changes, missing the case where the user has made a decision to remain in
the same state as before. For instance, a user could deny a permission when it has not been
granted before (permissions are set to deny by default when installing an app).
Because of the previous limitation, the permission change trigger is implemented as an ac-
cessibility service, which is used in Android to provide services (such as screen readers or
special input devices) to people with disabilities. Because an accessibility service is able
to inspect all text and user interface (UI) dialogs that are presented to the user, implement-
ing such a service allows to analyze the text that is currently on the screen. We implement
our own accessibility service to listen for events that correspond to the UI elements used for
changing permissions. We then extract the text from these dialogs to determine the type of
the permission and the app. We limit the accessibility service to only capture events from the
com.google.android.packageinstaller and com.android.settings packages (which
covers both the runtime permissions dialogs and the permission screen in the Android set-
tings menu). This makes sure that our service does not needlessly slow down the system, and
that it respects the participant’s privacy by not collecting data beyond what is needed.
To identify the app for which a permission change event occurred, we query Android’s usage
statistics manager (this requires the app usage permission), determining the last active app
that could have triggered a permission dialog to be shown. Because background services in
Android are not allowed to request a permission, a permission dialog must always belong to
the last active foreground app (if the package installer itself is excluded).
Two different cases of permission change events are considered. The most common case is
the one where an app requests a permission at runtime, either when it is first started or when
the user wants to use a specific feature requiring the permission. An example of this case
is depicted in Figure 7.2(a), where the “Maps” app requests the Location permission. The
second case is where the user actively changes an app’s permission, by navigating through
the Android’s settings menus to either the screen containing all permissions for an app (see
Figure 7.2(b)), or to the screen containing all apps that request a specific permission.

7.4.3 Generating and Surfacing Surveys

Paco allows to override the way in which surveys are generated and shown to participants, by
providing experiment organizers with the ability to write scripts that will be used for generat-
ing both the notifications and the actual survey. For this study, we extensively make use of this
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(a) The “Maps” app requesting the Location permis-
sion at runtime.

(b) Permission toggles for the “Maps” app in An-
droid’s settings.

Figure 7.2: Android’s different methods for modifying an app’s permissions.

functionality to dynamically generate questions. First, Paco’s scripting functionality is used
to comply with the study requirements for the in-situ questions outlined in Section 7.3.1.1.
This includes overriding how often (and for which events) the user is notified, and randomiz-
ing the order of all survey responses except the “Other” option.
Furthermore, instead of relying on a predefined set of static questions, we generate them
dynamically in order to provide more context to the participant (since the generated survey
questions could be answered after a short time gap). For example, instead of asking “Why
did you choose to allow the permission just now?”, the participant is asked “Why did you
choose to allow Maps access to your Location?”.
Finally, the exit survey is also offered through Paco. This survey, too, depends heavily on
dynamically generated questions. As discussed in Section 7.3.1, users are asked about how
comfortable they are with their apps having access to data associated with a specific per-
mission. These questions are generated for different <app, permission> pairs, where the
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Table 7.2: Type and frequency of the different events considered by our study, and the number
of events for which a participant was surveyed. See Section 7.3.1.1 for an explanation on survey
limits.

Event Type Occurrences Surveyed

App Installs 3118 1913
App Removals 1944 775
Permission Grants 2239 1605
Permission Denials 437 272
Total 7738 4565

permissions have already been granted for the app by the participant. For this purpose, the
Paco app is extended with the functionality to pass on a list of all apps and their associated
permissions to the script that is generating the surveys. This script selects one app for each
of the four chosen permissions and generates the questions accordingly.

7.5 App Decisions

7.5.1 Data Summary

We track four events in our study: app installs, app removals, permission grants, and permis-
sion denials. The total number of events that we recorded in our study are shown in Table 7.2.
As mentioned in Section 7.3.1.1, we enforce limits on the number of events we survey each
day. As a result, not all recorded events are surveyed. Our 157 participants triggered 3118 app
install events (of which 1913 are surveyed), and 1944 app removals (of which 775 are sur-
veyed). The apps could have come from either the Google Play store or from other sources.
On average each participant installed 20 apps and removed 12 apps during the 6 week pe-
riod. We note that a participant can install and remove the same app multiple times, and
each of these actions would be recorded as a separate event. An app removal event could
have occurred for an app that was installed prior to our study, and thus does not necessarily
correspond to one of the app install events we observed.
We clarify that the Paco tool recorded all events (not only those surveyed) for all of the 4 event
types that occurred on participants’ phones during the 6 week period. Based on the complete
set of user permission decisions, we observed an overall grant rate of 84% and a denial rate
of 16%. Due to our self imposed limits on the number of surveys shown per day, we ended
up asking survey questions for 72% of the grant events and 62% of the denial events. For
the surveyed responses, we find the grant rate to be 86% (with corresponding denial rate of
14%). Thus the grant and denial rates of our surveyed (i.e., sampled) events is very close to
the rates for the total occurrences. Out of the 157 participants, 144 answered the exit surveys.
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Figure 7.3: Event distribution across Participants
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Figure 7.4: Factors impacting app installation (multiple responses per installation event are pos-
sible)

In the rest of the chapter, we present results for the surveyed events to ensure consistency
with results about participant responses.
In Figure 7.3, we show the activity level of our participants with our surveys. Most answered
at least 10 surveys, and some have answered many more.

7.5.2 App Installs

After installing an app, our participants were asked to select which factors (all that apply) in-
fluenced their decision to install the app. These results are shown in Figure 7.4. As expected,
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we observe that price is the dominant factor. What is somewhat surprising is that the company
creating the app (i.e. the developer) is the second highest factor, even more important than
an app’s popularity. Among these six factors, permissions occur the least frequent, and only
directly affect 5% of app installation decisions. This is not surprising, because with the run-
time permissions model participants do not see the permission requests during the installation
flow3, and thus users are unlikely to think about permissions at that moment. However, these
install events – when participants selected permissions as a factor – came from 33% of our
participants; this indicates that permissions influenced one third of our participants at least
once during app selection. Note that app ratings and reviews can be influenced by privacy
concerns around permissions, and thus this 5% metric should actually be treated as a lower
bound in terms of its ability to capture the relevance of permissions for app installation.

Our observation about the influence of permissions at installation time corroborates the find-
ing in [Kelley et al., 2013], where permissions ranked 8th out of 11 reasons. However, our
findings about the influence of reviews and ratings differ significantly from those in [Kelley
et al., 2013] (see Figure 2 therein). They found that ratings, reviews and cost were most
important (in that order) and of similar importance, whereas in our study developer and pop-
ularity were factors cited more frequently than ratings and reviews. This could be due to
different study methods. They asked 366 MTurkers to rate factors on a 5-point importance
scale, whereas we asked participants to select all that apply. Moreover, the MTurkers in [Kel-
ley et al., 2013] were asked about their general views, whereas our participants were asked
about specific apps right after installation. This suggests that an interesting avenue for future
research would be to understand if and why the influence of reviews and ratings are evolving.

Table 7.3 shows the reasons why users install particular apps. For each reason, the percent-
ages indicate the proportion of install events (total events counts in Table 7.2) it was selected
for. The reason “I want to try it out”, that may capture curiosity, dominates the list and is
selected in 50% of installations as a reason. The other popular reasons “The app is useful”
and “The app is cool or fun to use” stress that the app’s functionality plays an important role
as well. We found that only 14% of the installs had social influences such as family and
friends. Only 34 times (2% of the surveyed installations) did participants indicate that they
compared the number of permission requests across apps before installing. However, these
34 instances originated from 15% of our participants. We hypothesize that permissions may
not be a key reason at moments of installation because Android users are aware that in the
runtime permissions model they can make decisions about permissions later when using the
app. In Section 7.6.1, we see this partly confirmed since for 40% of instances when denials
occurred, participants said they did so because they can grant these permissions later.
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Table 7.3: Reasons participants checked for app installation (multiple responses per installation
event are possible)

App Install Reason

Number of
Occurrences
(% of install
events)

I want to try it out 954 (49.9%)
The app is useful 579 (30.3%)
The app is part of a product/service that
I use

500 (26.1%)

The app is cool or fun to use 400 (20.9%)
I trust the app or the company making
the app

310 (16.2%)

My friends/family use it 276 (14.4%)
It was the only app of its kind (no other
apps provide the same functionality)

160 (8.4%)

Other 129 (6.7%)
I was required to install it 126 (6.6%)
I was offered something in return (e.g.
credits, monetary rewards, discount)

79 (4.1%)

The app has fewer permissions than
other apps like it

34 (1.8%)

I don’t know 34 (1.8%)

7.5.3 App Removals

The reasons our participants remove apps are shown in Table 7.4. As expected, the most
common reason is that the participant no longer uses the app. The second most common
reason, device performance, influenced 28% of app removals. In Section 7.5.1 we saw that
participants are uninstalling apps at an average rate of 2/week. We were surprised by this as
we assumed that when users stop using an app, they simply leave it ignored on their device
rather than actively bothering to remove it. We see from these rationales that users are often
removing apps for performance reasons and this contributes to the removal rate. We note
that the “Other” bucket is large. Upon examination of the open ended feedback for the 128
app removal events in the “Other” option, we found that it mostly included additional details

3Some older apps that do not target an Android API level of 23 (Marshmallow) or above, and that are not yet
updated to use the new permissions model, could still show a list of requested permissions at install time.
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Table 7.4: Reasons participants checked for app removal (multiple responses per removal event
are possible)

App Removal Reason

Number of
Occurrences
(% of removal
events)

I no longer use the app 307 (39.6%)
To free up space or speed up my device 216 (27.9%)
I didn’t like the app 208 (26.9%)
Other 128 (16.5%)
The app is not working as expected 120 (15.5%)
The app is crashing / very slow 48 (6.2%)
Because of advertisements in the app 42 (5.4%)
Because of in-app purchases 35 (4.5%)
The app required permissions I wasn’t
comfortable granting

32 (4.1%)

I don’t know 16 (2.1%)

clarifying one of the already selected options. Some of the remaining responses suggested
issues related to privacy or mismatched expectations. Examples include:

• Permission abuse: “The application is abusing the permission for location that I granted
it. Uninstalling for this abuse of GPS.” (P7)

• Negative publicity: “Read that the app is stealing private information about the phone
and sending it back to China.” (P31)

• Expectation mismatch: “It didn’t have the information I was expecting it to have ac-
cording to the description box.”(P64)

Not all negative press cycles result in uninstalling apps, but for the participant above (second
quote) it did. The reason “App required permissions I wasn’t comfortable granting” is among
the least influential here, however that option was triggered by 15% of our participants for 32
removal events. Note that if this 15% is extrapolated to the Android user base, that includes
over 2 billion active devices, then the order of magnitude for devices uninstalling apps due to
permissions would be in the 10s of millions.
In April 2016, the Google Play store started to require all developers to prominently disclose
if their app included ads and in-app purchases. Among our participants, we see that only 10%
of all uninstall events were influenced by ads or in-app purchases. This low fraction may be
due to this extra transparency that helps manage people’s expectations.
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7.6 Permission Decisions

In this section, we discuss the reasons participants provided when accepting or denying app
permission requests. Our participants granted 86% of the surveyed permission requests, in-
dicating that they were 6 times more likely to grant a permission request rather than deny it,
on average. It is noteworthy that the 14% of permission requests that were denied came from
49% of our participants. This indicates that nearly half of our participants denied a permis-
sion at least once in a 6 week period. We also observed that 95% of all decisions were made
via the runtime dialogs as opposed to from inside the Android settings menu. The permission
grant ratio for decisions made at runtime is 86%, whereas it is only 71% for decisions made
via the settings menu, implying that users are more likely to deny a permission through the
settings than when deciding at runtime. One plausible explanation is that users, especially
those concerned with privacy, may seek to turn off access to personal data when they are not
using an app.

7.6.1 Permission denials

Table 7.5 shows the reasons participants had for denying permissions. Participants could pick
as many reasons as they wanted for each decision, and overall the average number of reasons
per denial decision was 2.3. The top two reasons imply that the majority of decisions are
being made by focusing on the functionality of the app, and whether or not it really needs the
particular permission. This corroborates previous findings by Wijesekera et al. [Wijesekera
et al., 2015], who observed that relevance to app functionality is a dominant reason for block-
ing permissions, though we find different fractions of participants who select this reason.
Wijesekera et al. found that 53% of their participants wanted to block a permission because
it seemed unnecessary for the app functionality. If we use our top two reasons as a proxy for
their “unnecessary for app functionality” reason, our data reveals that 34% of our participants
fall into this category. A potential explanation for why our study observes fewer participants
denying permissions because they felt it was unnecessary is as follows. In [Wijesekera et al.,
2015] the participants were shown (at the end of the study) a handful of permission accesses
that had occurred during the prior week and asked if they would have liked to deny them and
why. This captures their attitude. In our study, we capture participants actions (i.e., behav-
iors) and their associated rationale. In essence this gap reflects a type of difference between
privacy attitudes and behaviors and thus it is not surprising that the privacy behavior occurs
less often than the stated attitude.
It is interesting to note that the reason “I can always grant it afterwards if I change my mind”
is very prevalent among our participants (essentially tied for second place), indicating that
users are aware about the fact that permissions for an app can be changed at any time (via
Android’s settings menu). Providing this answer for a permission denial could indicate that
the user is denying the permission initially to see if the app still works, and undoing this
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Table 7.5: Reasons participants checked for denying a permission to an app (multiple responses
per deny event are possible)

Permission Deny Reason

Number of
Occurrences
(% of deny
events)

I think the app shouldn’t need this per-
mission

111 (40.8%)

I expect the app will still work without
this permission

110 (40.4%)

I can always grant it afterwards if I
change my mind

110 (40.4%)

I do not use the specific feature associ-
ated with the permission

95 (34.9%)

I consider the permission to be very
sensitive

57 (21%)

I don’t trust the developer enough to
provide this information

42 (15.4%)

I wanted the permission screen to go
away

36 (13.2%)

Other 28 (10.3%)
I think something bad might happen if
I provide this permission

15 (5.5%)

I didn’t know I did that 7 (2.6%)
I don’t know 6 (2.2%)

decision later if necessary. This may indicate that the participant would prefer to use the app
in a more private way and tests that possibility.

There were 57 instances where our participants denied a permission because they explicitly
considered it to be very sensitive. It is striking to see that this was a more significant reason
than not trusting the developer. Among these 57 instances, only 22 also picked “don’t trust the
developer” option. This implies that the remaining 35 instances (coming from 18 participants)
correspond to scenarios were the participants do not distrust the developer but nevertheless
consider the permissions sensitive and do not want to share the data. This suggests that
although trust is necessary, it may not be sufficient to convince users to share data. This is
of course a complex issue that requires further study because it is hard to know exactly how
participants interpreted the “trust” option in our surveys.
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Figure 7.5: Participant Permission Decisions
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Figure 7.6: Reasons participants checked for denying each specific permission (multiple responses
per deny event are possible). Each entry in the heatmap expresses the ratio of number of times
that reason was given for the permission, over the count of all denies for the permission.

We now examine decision making with respect to permission types. In Figure 7.5(a), we see
that the largest number of permission decisions occur for Storage and Location permissions.
For each permission type, Figure 7.5(b) shows the fraction of requests that were denied. As
is clear from this plot, the Microphone permission has the highest percentage of denials,
followed by the Phone and Contacts permissions. It is interesting that Camera access did not
exhibit a similar denial rate as Microphone; we posit that this might occur because the Camera
permission sometimes only entails taking still photos (without audio and video). Although
Location is perhaps the permission that users are most aware of, it does not appear among the
top three most denied permissions. One possible reason is that users might have experienced
some sort of habituation effect [Bouton, 2007] for the Location permission, where a repeated
exposure to such a permission request could have reduced their level of sensitivity or concern
when granting such a permission, similarly to what has been reported in another study on
pop-up dialogs [Bravo-Lillo et al., 2014].
To determine whether some decision rationales are more influential for specific permission
types, we broke down our participants’ reasons for permission denials according to the per-
mission type. Figure 7.6 illustrates this via a heatmap. We have removed 2 permission types,
SMS and Calendar, because there were fewer than 15 denials for these permissions.
Overall, we observe that the top two or three reasons for each permission type can differ. For
example, for Location and Camera the top reason for denying is “I don’t trust the developer”.
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This reason has little significance for Phone and Contacts, where the dominant reasons are “I
can always grant it afterwards” and “The app will still work without this permission”. This
shows that users make decisions about each of the permission types according to different
rationales. We hypothesize that for Phone and Contacts, our participants might be trying
to not share them initially at all (and only doing so later if really needed) - thus issues of
functionality are top of mind. However for Location and Camera, it is possible that the
reason why the data is needed is often more clear and thus the primary rationale is based on
trust.
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Figure 7.7: Percentage of permission denials across apps belonging to different Play store cat-
egories. The numbers on the bars indicate the total number of permission decisions in each
category.

Next, we assess whether the permission denial rates are different across different app cate-
gories. For each of the 624 apps that registered a permission grant or denial event in our
study, we identified its Play store category and considered it as an indicator of the app’s func-
tionality type. We recognize that some Play store categories, such as ‘Productivity’, are very
broad and cover a wide range of app functionalities. However, app category was the only
readily available functionality indicator.
Among the 624 apps, 41 did not appear in the Play store and seem to be device manufacturer
apps that come pre-installed on the Android device or apps that have been downloaded from
other Android app stores. For the remaining 583 Play apps, we aggregated the grants and
denials across apps in each Play category. There were just 8 categories that had more than
20 apps, and the denial rates for these categories are shown in Figure 7.7. We also overlay
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Table 7.6: Reasons participants checked for granting a permission to an app (multiple responses
per grant event are possible)

Permission Grant Reason

Number of
Occurrences
(% of grant
events)

I want to use a specific feature that re-
quires this permission

1095 (68.2%)

I trust the app developer 515 (32.1%)
I think the app won’t work otherwise 382 (23.8%)
I have nothing to hide 289 (18%)
Nothing bad will happen 225 (14%)
The app developer already has this in-
formation about me

208 (13%)

I wanted the permission screen to go
away

164 (10.2%)

Because the app is popular 150 (9.3%)
Other 39 (2.4%)
I didn’t know I did that 36 (2.2%)
I won’t be able to grant this permission
later

22 (1.4%)

the number of permission decisions within each category as the number on top of each bar.
Denial rates vary between 5% - 19% across these 8 app categories. Moreover, the same per-
mission can have different denial rates across different app categories. For example, ‘Travel
and Local’ had a 43% denial rate for the Location permission, whereas ‘Communication’
registered only a 11% denial rate for the same permission. This reaffirms the influence of app
functionality on users’ permission grant or deny decisions.

7.6.2 Permission Grants

We now examine the reasons why users agree to grant permission requests. Table 7.6 shows
that the dominant reason is “I want to use a specific feature that requires this permission”,
which suggests that users are agreeing because the request is in line with their expectations.
As suggested by Felt et al. [Felt et al., 2012a], a goal of using runtime dialogs is to improve the
permission decision making and to avoid undermining users’ expectations; our results thus
indicate progress on that front. The second most important reason is trust in the developer.
As discussed earlier, follow up work is necessary to fully understand how trust influences
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permission choices. Nonetheless, this result underscores how important it is for developers
to gain a trustworthy reputation among (potential) users.
In a similar way as we did for the denials case, we checked whether some reasons are more
influential for specific permission types, but found the distribution of reasons to be similar
across permission types.
Next we look at the question of whether or not participants grant permissions willingly. Re-
call that after our participants granted a permission, we asked them to indicate if they agree
or disagree (5 pt scale) with the statement “I don’t mind giving <app> access to my <per-
mission>” (Q2 in Appendix C.1.3). Surprisingly, we found that 10% of the time, participants
indicated that they “Disagree” or “Strongly disagree” with the statement (see Figure 7.8).
This could occur if participants believe an app won’t work without the requested permission
and so they agree, albeit reluctantly. This can be associated with the phenomenon of “learned
helplessness” [Warshaw et al., 2015], which covers scenarios when participants convince
themselves they agree with something (e.g., data sharing) because they did not really have a
choice.
To see whether this comfort level changes over time, we asked participants in the exit survey
to rate their comfort level with permissions they had granted to apps on their phones in the
past (Q19 – Q22 in Section C.2; we included “I don’t know the app” as an additional option).
When asking these questions, we made the permissions more specific. For example, if the
participant had granted the Storage permission, we ask whether they were comfortable with
the app accessing photos on their device storage. These questions were intended not only to
revisit comfort with prior decisions, but also to illustrate more explicitly to the participants
the implication of their decision. These prior decisions may have occurred any time during
our 6 week study or even earlier as explained in Section 7.3.1.2.

0

10

20

30

40

Strongly
Agree

Agree Neither Disagree Strongly
Disagree

Participant agreement for grants

P
er

ce
nt

ag
e 

of
 g

ra
nt

s

Figure 7.8: Participant responses to the statement: “I don’t mind giving <app> access to my
<permission>”, right after granting that permission.



7.6 Permission Decisions 127

0

50

100

150

Ex
tre

m
el

y

C
om

fo
rta

bl
e

M
od

er
at

el
y

C
om

fo
rta

bl
e

So
m

ew
ha

t

C
om

fo
rta

bl
e

Sl
ig

ht
ly

C
om

fo
rta

bl
e

N
ot

 A
t A

ll

C
om

fo
rta

bl
e

I D
on

't 
Kn

ow
Th

e 
Ap

p

Comfort across past permission grants

N
um

be
r 

of
 O

cc
ur

re
nc

es

Figure 7.9: Participant comfort for permissions that were granted in the past, in response to
the exit survey question “How comfortable would you be with the <app name> app knowing
<information available through the permission>”.

In a surprisingly high number of situations (see Figure 7.9) participants were not comfortable
with their prior decisions. In 29% of scenarios presented to the participants, they indicated
they were “Not at all comfortable” with the data access that was allowed to the app. If we
include the cases where users were “Slightly comfortable”, then we see that in 44% of the
cases our participants are not feeling comfortable about their past decisions. These discomfort
levels vary based on the permission: on a scale from 1 to 5, where larger numbers indicate a
higher discomfort, the Storage permission entails an average discomfort of 3.41, Phone has a
discomfort of 3.33, Contacts has a discomfort 3.11, and Location has a discomfort of 2.77.

Participants were not comfortable about permissions they granted in the past and this may be
occurring because they do not always understand what a permission entails, and only realize
this after it is made explicit. Consider, for example, the Storage permission: this permission
might be understood by a user as allowing the app to store data on the device, only to be
refuted by our question stating that the app now has access to pictures on the user’s device.
This explanation is supported by previous work [Harbach et al., 2014; Swanson et al., 2010]
that has shown how users need to be confronted with a specific scenario before being able to
correctly reason about privacy and security.

It is interesting to contrast the 29% discomfort long after decision making, to the 10% re-
luctance that existed at the moment of decision making. This 29% statistic could be said to
capture privacy attitudes; the exit survey captures what people say or think about sharing data
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when they are being questioned but not making a real life decision. However in practice, in
only 10% of grant decisions did users say that they minded sharing the data right after grant-
ing. The gap between these numbers approximately captures the difference in participant’s
attitudes and behaviors, in the context of Android permissions.

7.6.3 Other influences

We check whether the participants’ demographics are associated with their grant/denial be-
havior. We used Pearson’s Chi-squared test (with Yates’ continuity correction when needed)
to check the dependence between participants’ age and gender, and their denial behavior. We
control for age (gender) when gender (age) is being tested. Due to small sample sizes, we
did not test for independence across education and employment demographics. We notice
that women across age groups 18-23 (χ̃2 = 10.7, df = 1, p-value = 0.001068) and 31-40 (χ̃2

= 16.3, df = 1, p-value = 5.396e-05) are three times as likely to deny permissions than men.
On average over all age groups, women deny twice as often as men, with a 20% denial rate
for women compared to 11% for men (χ̃2 = 25.6, df = 1, p-value = 4.11e-07). Comparing
men across different age groups, we notice that men’s denial rates differ significantly (χ̃2 =
31.2, df = 4, p-value = 2.841e-06); participants in age ranges 18-23 and 31-40 have denial
rates around 5% whereas the other age groups have denial rates of 15% or higher, about three
times higher.
Lastly, we checked associations between participant responses to questions in the exit survey
(Q1–Q18 in Section C.2) and their permission denials. We did not find any statistically
significant correlations or dependencies.

7.7 Conclusion

There are a couple of important takeaways herein for Play store developers. First, we saw
that in terms of app installs and uninstalls, permissions were not a dominant reason compared
to other reasons. However, 15% of our participants uninstalled apps due to permissions. Ex-
trapolating this statistic to the set of Android devices (over 2 billion), indicates that this could
affect tens of millions of devices. This result could motivate developers to reconsider request-
ing certain permissions at all or to make runtime requests more contextual – for example by
only asking for permission access when the user opts to use certain functionality within their
app rather than at first run.
Second, the vast majority of rationales for decision making around permissions are related
to app functionality, whether the app needs the permission, whether it “should” need it, and
whether the user needs the functionality entailed by it. Thus, participants are more willing
to grant permissions when the reason for asking is clear. This should motivate developers
to provide sufficient and clear explanations for their requests. Android provides a utility
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method (shouldShowRequestPermissionRationale()) to help identify situations where
users might need an explanation.
In summary, we observed an overall denial rate of 16%. These denies came from half our
participants which indicates that there exists one or some scenarios for many people in which
they will deny a permission. The scenarios when participants deny permissions are very
varied. This is implied by the findings that i) denial rates vary from 10% to 23% according
to permission type, and ii) denial rates vary from 5% to 19% across app genres (Play store
categories). Among our participants, we also saw that women denied permissions roughly
twice as often as men.
We found that even though the overall grant rate is quite high, at 84%, there is a portion of
decisions (10%) in which users grant permissions reluctantly. Moreover, users were surpris-
ingly uncomfortable (29%) when revisiting their prior decisions at the end of our study. This
indicates a gap between behaviors and stated attitudes.
Our participants’ rationale for denying a permission in 42% of denial instances, was because
they knew they could change the permissions afterwards. We hypothesize that this might be
happening because participants want to test out whether or not the app will work in a more
privacy preserving way (with less user data). Exploring this would be an interesting avenue
for future research.
It is interesting albeit hard to understand how users’ comfort levels and understanding of
permissions have evolved after the introduction of runtime dialogs. In [Wijesekera et al.,
2015] (pre-runtime), the authors state that 80% of their participants wanted to deny at least
one permission. In our study, we recorded that 49% of our participants denied permissions
at least once. We found that 16% of permission requests were denied. This is about half the
rate reported in [Wijesekera et al., 2015], though the latter study asked participants to allow
or deny access many times a permission was used, instead of only on first use as in our study.
These two studies differ in their interactions with users, and both involve limited populations,
yet these metrics hint that users may be getting more comfortable granting permissions using
runtime dialogs. It would be interesting to explore this hypothesis in future research that
makes a more direct comparison.
Catering to the discomfort of 29% of our participants about permissions they granted in the
past, either because they did not fully understand the implications of granting the permission,
or because they did not recollect granting the permission, we will present an initial proposal
for a “Privacy API” in Chapter 9. This API aims to inform smartphone users, and other users
of internet services, about the data that is being collected by the providers of these services.
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Part II: Conclusion

In the second part of this dissertation, we were able to gauge the prevalence of the security
and privacy issues that we presented in the first part. We showed that in 2017, usage of Wi-Fi
networks is very popular, with users on average connecting to 8 different Wi-Fi networks
in a 30-day period. We demonstrated that between 64% and 88% of mobile device users
can be mapped to at least one previously visited physical location, only based on the signals
broadcast by their smartphones.

Over one third of the Wi-Fi networks that smartphone users connect to do not have any
encryption enabled, which means that connections can be monitored by eavesdroppers in
range of the network. Even more worrying is that 45% of these users are susceptible to Evil
Twin attacks, allowing an attacker to set up a fake access point that their devices will connect
to automatically (offering the attacker the position of an active man-in-the-middle), without
user intervention. Combining these results with the fact that 13% of connections made by
apps on users devices are insecure (and the user being unaware about 38% of them), we can
state that privacy and security issues in smartphones are something that affects a large amount
of smartphone users.

We then continued to show how aware smartphone users are about the aforementioned issues.
Gauging how aware users were about the ability of attackers to extract information from
probe requests sent out by their devices, we showed that 76% of the surveyed users were
unaware about one or more privacy or security issues induced by this fact, with 52% of
users being unaware that this causes an attacker to mount an Evil Twin attack. Furthermore,
users indicated to be worried about 91% of the insecure connections that were made by their
devices, confirming the Privacy Paradox. We also showed that, unfortunately, an increased
awareness does not always translate to better security practices.

Analyzing users’ decision making regarding permissions for apps on their devices, we show
that smartphone users are relatively comfortable with the information access they are granting
to apps: in our study, participants indicated they did not mind granting 84% of permission re-
quests at the moment the access was allowed. However, when questioned about their comfort
around already granted permissions at the end of the study, and with explicit examples of the
exact data that is available to the app developer, the level of discomfort climbed to 29% of
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cases. To cater to this discomfort, caused either by the fact that they did not fully understand
the implications of granting the permission, or by the fact they didn’t recollect granting the
permission, we will present an initial proposal for a “Privacy API” in Chapter 9. This API
aims to inform smartphone users, and other users of internet services, about the data that is
being collected by the providers of these services.
In performing our studies on Wi-Fi awareness, we also increased awareness among our par-
ticipants and other smartphone users, demonstrating the value of using very specific, person-
alized scenarios. This approach proved to be highly effective: 76% of participants in the
SASQUATCH study indicated they weren’t aware about the presented issues before the ex-
periment. From their responses, we found that participants indicated they were willing to try
out different solutions to mitigate these issues. We will discuss possible solutions in the next
part of this dissertation.
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Towards improving security and
privacy for mobile devices and

users





Introduction

As we already discussed in Chapter 5, existing work shows that people are willing to act in the
interest of preventing further privacy leaks [Boyles et al., 2012; Günther and Spiekermann,
2005; Consolvo et al., 2010]. This is confirmed by our own work: 62% of participants in the
SASQUATCH study indicated they were willing to make an effort to make their smartphones
more secure against the demonstrated attacks. In the last part of this dissertation, we pro-
vide an overview of methods and techniques that can help mobile device users in improving
their security and privacy, while keeping in mind the difficult trade-off between usability and
security [Whitten and Tygar, 1999].
When the participants in our SASQUATCH study were asked about the actions they are will-
ing to undertake to protect against these issues, an overwhelming majority of users say they
would like to be able to install an app that prevents different Wi-Fi attacks. Indeed, this set-
it-and-forget-it approach also surfaced in the study about Wi-Fi privacy assumptions, where
users preferred delegating security to a tool they have to set up only once. For this reason, we
will also describe the implementation of an Android app that automatically protects against
different Wi-Fi attacks, called Wi-Fi PrivacyPolice.
We also provide an overview of other ways for improving Wi-Fi privacy on smartphones,
from a variety of contexts. These solutions are presented as suggestions to changes in tech-
nology, habits and legislature to different stakeholders, including developers, ISPs and law-
makers.
We go further than discussing only solutions to the technical aspects of smartphone security
and privacy by also considering the privacy of information flows of apps that are installed on
users’ devices. For this, we introduce the concept of a privacy API that allows us to cover the
privacy of user data after it has been captured.
We end the final part of this dissertation with a discussion of the parallels between issues that
were handled in this work and those that exist in Internet of Things (IoT) devices today. In
the last chapter, we will make the case that the same issues exist for both types of technology,
and that the Internet of Things space is now in the same place as mobile devices were at the
start of this PhD work. We briefly discuss the impact this has.
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8.1 Introduction

After our studies in the previous chapters, we provide some solutions to the aforementioned
privacy and security issues on mobile devices. In this chapter, we deal with technological
improvements, both in the form of recommendations to a variety of stakeholders, and in the
form of an app that allows the set-it-and-forget-it approach that was discussed in Chapter 6.
In the first section, we describe a set of guidelines on how to prevent future privacy leaks.
These are presented first to the smartphone users themselves, to show how they can protect
themselves in the short term. However, we also present a set of recommendations to devel-
opers, manufacturers, network providers, and researchers. We do this with the aim of solving
these issues in the long term without requiring user intervention, benefiting all smartphone
users instead of only those concerned about their privacy.
Afterwards (in Section 8.3) we describe Wi-Fi PrivacyPolice, an app designed to solve a
subset of the described privacy and security issues in an automated fashion. Specifically, it
prevents the names of preferred networks from leaking to third parties, and it protects against
Evil Twin attacks, which are designed to lure smartphones into connecting to a clandestine
network.

8.2 Recommendations on smartphone security

In this section, we describe some countermeasures that can be taken by different stakehold-
ers, based on the results from our studies in earlier chapters. First, we describe strategies
that allow smartphone users to mitigate network attacks mostly in the short term. We then
show how these attacks can be solved at a technical level, by giving some recommendations
to developers; this category of stakeholders includes app developers as well as smartphone
manufacturers and operating system vendors. Some of these techniques will be applied in
a real-world app in Section 8.3. We then continue with recommendations to ISPs and net-
work providers on the opportunities to secure their connections. We close with ideas on how
academic research could help improve smartphone security.
As described in section 5.2, usability is an important factor to consider when increasing the
security of a system [Whitten and Tygar, 1999]. For this reason, we aim to provide only
solutions that have a minimal impact on user convenience and usability.

8.2.1 What the smartphone user can do

As a stopgap solution, users can largely secure themselves against profiling and Evil Twin
attacks by removing networks from their preferred network list (PNL) when they are not
needed. While removing networks from the PNL is easy on both Android and Windows
Phone mobile devices, iOS devices lack the capability of removing networks when they are
not in range. Thus, iOS users wishing to remove networks from their PNL need to either be in
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range of the original network (which is often not possible), or need to actively spoof the net-
work themselves when they want to remove it. Because the SASQUATCH setup described
in Chapter 5 impersonates all networks requested by smartphones in range, participants in
our experiment and other iOS users within Wi-Fi range of our setup were also able to remove
these networks from their PNL. This solution, together with instructions on how to remove
networks from a smartphone’s PNL, was also displayed to participants that finished our sur-
vey. We also included the remark that iOS users had the option of staying close to our setup
in order to remove insecure networks from their list.

Similarly, iOS users are able to protect against the Evil Twin attack by enabling the option
“Ask to Join Networks” in the Wi-Fi settings. Enabling this option will cause the iPhone
or iPad to never automatically connect to a known network. Instead, it will ask the user
for confirmation every time a network connection is made, making this a typical trade-off
between convenience and security. In Section 8.3, we will describe a solution (implemented
as part of an app), that allows a third – intermediate – option: having the smartphone ask
confirmation whenever a new access point corresponding to an already trusted network is
encountered.

Smartphone users can also secure their own managed networks (e.g. their home network)
against the previously mentioned attacks by choosing a common SSID (e.g. linksys or
dlink, which are among the highest ranking SSIDs in our dataset based on occurrence),
and securing it with a non-common key. This effectively thwarts profiling by SSID because
an eavesdropper has no way of knowing where the particular network the smartphone is
referencing is located. Furthermore, Evil Twin attacks are prevented because an attacker has
no way of knowing which key should be used when spoofing the network. Since this method
requires the smartphone to have a common SSID in its network list, a disadvantage could
be that the smartphone continually discovers networks it thinks are the home network of the
user. This would lead the smartphone to try and fail to connect to each one of these networks,
possibly draining the battery.

Virtual private network (VPN) services allow users to route all their network traffic through
an intermediate server in an encrypted fashion, and could be used to ensure a secure connec-
tion even when the network itself is compromised by an attacker. While these services are
indeed able to prevent an eavesdropper (or the network owner) from intercepting traffic, they
present some other challenges. First, VPN services can be difficult to use for technically less
educated users or users depending on services that actively block the use of a VPN. Second,
and more importantly, VPN services are difficult to vet, with a recent study showing that 75%
of Android VPN apps contain a third-party tracking library, and over 38% of them contain
some type of malware [Ikram et al., 2016].
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8.2.2 What a developer / manufacturer can do

A technique for preventing tracking of Wi-Fi devices over time that has gained some traction
in the past years is MAC address randomization. This technique essentially uses a pseudo-
MAC address when the device is in an unauthenticated state (such as when scanning for new
networks), preventing devices such as the one described in Chapter 2. This technique has been
implemented in recent versions of both Android (since version 5.0) and iOS (since version 8).
However, multiple studies have shown that either this countermeasure was completely absent,
not implemented correctly, or easy to subvert [Martin et al., 2017; Robyns et al., 2017].
As mentioned in Section 2.8, preventing third parties from knowing the MAC address of
the device is not sufficient. Indeed, a third party attacker can still infer information about the
smartphone from the list of SSIDs broadcast by this device. Indeed, as a short prestudy for the
SASQUATCH study in Chapter 5 has shown, we were able to identify a significant number
of our own colleagues (researchers with a background in computer science) solely based on
the network SSIDs sent out, the manufacturer of the smartphone or the time at which they
entered or left our lab building. Thus, it is important that this SSID leakage is prevented in
addition to techniques like MAC address randomization.
A simple solution for preventing leakage of all SSIDs while providing the same existing
convenience and ease-of-use to the user would be to not have the smartphone send out probe
requests for known networks. However, this method is unlikely to be adopted by any major
smartphone manufacturer, as it would require smartphones to continuously scan the Wi-Fi
spectrum for beacons sent out by access points (known as ‘passive scanning’), necessitating
the Wi-Fi radio to be enabled at all times.
A better option would be to use only broadcast probe requests. This type of probe request
does not contain an SSID, and invites all access points in range to respond with a probe
response containing the network identifier of the access point’s network, enabling the smart-
phone to pick out its preferred networks. However, this approach would not work for net-
works with hidden SSIDs, as they require the client (in this case, the smartphone) to actively
show its knowledge of the network beforehand. This should not be considered a major prob-
lem, as these types of networks are considered not to add any security, and the use of them has
been discouraged for some time [Davies, 2005]. Lindqvist et al. [Lindqvist et al., 2009] de-
scribe a privacy-preserving method for access point discovery allowing for the use of hidden
access points using cryptography.
Limiting the broadcasting of probe requests would also mitigate the problem of connections
that are being made to impersonated (Evil Twin) access points. Indeed, if no specific SSIDs
are mentioned in probe requests, an adversary has no way of knowing which networks to
spoof. However, an attacker will still be able to spoof generally available networks (e.g. Mc-
Donald’s Wayport_Access network). To further protect against Evil Twin attacks, a smart-
phone could allow connections to a network only at locations where it is known to be in range
(e.g. beacause the first connection was made at that location). Using the exact location, how-
ever, may cause the battery to drain at a faster rate because the smartphone’s GPS is used.
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As an alternative to using the exact location, connections to a network can be restricted to
envrionments where a known set of other networks is also in range.

All of the previous solutions rely on smartphone manufacturers and mobile OS develop-
ers for a universal implementation. However, operating systems like Android, Windows or
GNU/Linux allow for applications to read and/or modify the Wi-Fi configuration, and to en-
able or disable networks in the PNL. This would allow for applications that either warn the
user about forgotten access points (i.e. access points that have long not been used), that enable
wireless networks on a per-location basis or that even only enable networks as soon as they
are known to be in range (e.g. based on probe responses to broadcast probe requests). Dis-
abling networks when not needed effectively stops the smartphone from sending out probe
requests for these networks, mitigating both of the problems mentioned. Section 8.3 will
discuss an automated solution that allows only connections to SSIDs when the access points
themselves are known (based on the access points’ MAC addresses), providing the benefits
of a location-based approach without the battery impact.

Having security between the mobile device and the network, preventing eavesdroppers from
monitoring metadata about network connections, is only part of a complete solution. With
most participants from our Wi-Fi survey (71%) having a high concern of their data being
available even to the network provider, app developers need to secure against all possible
forms of man-in-the-middle attacks. In practice, this means making sure that all connec-
tions between the user’s device and the app provider’s servers are end-to-end encrypted, and
that the libraries and implementations used to achieve this are secure and up-to-date (see
[Georgiev et al., 2012]). We recommend using some form of certificate pinning, where the
public key certificate of the other endpoint is already embedded in the app package instead
of relying on the system’s certificate chain to validate the other endpoint’s key. As 12.92% of
the connections logged during the study from Chapter 6 (excluding servers of advertisement
agencies) were insecure, app developers in general have some room of improvement.

Based on our study on Android permissions in Chapter 7, there are some steps app devel-
opers can take in order to improve understanding for their users, and to increase the install
base for their apps. First, requesting permissions at run time (instead of at install time) and
making these runtime requests more contextual (by requesting them at the time they are
needed) prevents apps from being uninstalled by users. Second, when requesting a permis-
sion, the rationale provided by the app should be clear, as users’ permission decisions are
heavily influenced by whether the user understands the request. Android provides a utility
method (shouldShowRequestPermissionRationale()) to help identify situations where
users might need an explanation.

A specific recommendation can be made to distributors of the Android operating system, too:
while the fact that Android’s /proc/net/tcp and /proc/net/tcp6 files are readable for
every installed application greatly helped performing the experiments in our Wi-Fi survey,
they also pose a potential privacy risk to Android users. Indeed, the app developed for our
study was able to infer the connections made by all other apps on users’ devices without
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requiring any special permissions, leading to users giving feedback akin to “it’s creepy what
your app is able to see”. Barring any technical limitations the authors are not aware of, we
recommend restricting access to these files from apps, making them available only to the
operating system itself.

8.2.3 What network providers and ISPs can do

As our results in Section 6.5 show, over one third of the Wi-Fi networks that smartphone users
connect to do not have any security enabled. This shows that even in 2017 more attention
needs to go to pushing network operators to secure their Wi-Fi networks. As mentioned in
Section 6.6, the biggest offenders are commercial entities and ISP hotspots. While convincing
all commercial entities to upgrade their networks to provide security might prove difficult,
convincing a few ISPs to do the same will yield an almost equally good result. Moreover, as
these ISP hotspots are widely distributed (with each network name corresponding to a large
number of individual access points), devices will often automatically connect to one of those
networks, posing a large security risk. Indeed, they accounted for over 94% of all connection
pairs in our study. Thus, we recommend ISPs to eliminate any insecure hotspots from their
network, instead providing only encrypted hotspots to their customers. If this proves to be
difficult, e.g. because the ISP also wants to provide internet access to non-subscribers through
a captive portal, we recommend offering two separate wireless networks: a secured network
for subscribers, and an insecure network that allows the use of a captive portal. In addition,
we envision that implementing the 802.11u wireless roaming standard and Hotspot 2.0 (also
known as Passpoint) could provide benefits in this regard.
One consequence of cellular data replacing (or supplementing) Wi-Fi for mobile device users
is that trust shifts from the Wi-Fi network providers to the mobile network operators. This
makes the operators the middle man between the user’s device and the other endpoint, and
gives them the same responsibilities: they need to make sure the network is upgraded to
the latest generation so that users are not susceptible to eavesdropping attacks. While LTE
provides significant security advantages over older generations of networks, it is not immune
to attacks [Shaik et al., 2016]. Whereas at the moment of writing these do not pose an
immediate threat to users in the form of eavesdropping attacks, these could still enable an
active attacker to force a victim’s device into using 2G or 3G rather than LTE networks,
which can in turn make it possible to mount 2G- or 3G-specific attacks.

8.2.4 What security and privacy researchers can do

As was already indicated in Section 6.6, users tend to use a set-it-and-forget-it approach
when dealing with security and privacy issues, limiting their security awareness when trying
to complete a task at hand. This makes that even generally privacy-aware users are often
unaware about security issues at the moment they occur.
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To cater to the set-it-and-forget-it approach, users need to be able to delegate their security
approach to a tool, setting it up at a time that is convenient to them. Such a tool can take
the form of, for example, the Wi-Fi Privacy Ticker [Consolvo et al., 2010], informing the
user at the exact moment privacy-sensitive data is being transmitted by their device, and
allowing them to prevent it if desired. As far as the authors are aware, such a tool is currently
not available for mobile devices, and developing it could prove to be an interesting area for
future work.

Another approach, similar to what we discussed in Section 8.2.2, could be to have either a
tool or the operating system handle possible insecure situations differently, modifying the
user interface to nudge users into making good security decisions as described by Balebako
et al. [Balebako et al., 2011]. For example, the operating system could be modified to make it
more difficult to connect to unsecured networks, either by making this option less accessible
in the user interface or by having the user explicitly dismiss a warning about the dangers of
connecting to such a network. This is already the case on some operating systems, and it
also corresponds to user interface changes that were made in specific applications in order to
improve users’ security behavior. For example, the Google Chrome browser uses SSL warn-
ings to warn users about the dangers of unsecure connections, based on an extensive study
of possible designs, and attributing improvements to these dialogs to ‘opinionated design’,
using visual cues and specific threat scenarios to explain the risk to users [Felt et al., 2015].
In a similar vein, unsecured networks could be prevented from being included in the list of
‘preferred networks’ the mobile device will connect to automatically, still allowing the user
to complete their task (by allowing a connection to an insecure network when needed), but
preventing the device from connecting to a similar network later on. This is similar to the
approach taken by the “Wi-Fi PrivacyPolice” tool, discussed in the next section, which can
be set up to only allow connections to access points that were encountered before.

8.3 Automatically solving privacy issues with Wi-Fi Privacy-
Police

In order to solve the privacy issues associated with mobile Wi-Fi usage in an automatic man-
ner, we created an Android application, first as a proof-of-concept but later published as a real
application. This application, called Wi-Fi PrivacyPolice, is designed to prevent the attacks
described before. We describe the functionality of the application in two parts: the prevention
of network leaks, and the prevention of evil twin attacks. We tested both mitigation strate-
gies on our personal devices for a period of 6 months, and using different types of wireless
networks and access points. We noticed no degradation of the user experience.
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8.3.1 Preventing network leakage

The leaking of SSIDs from the smartphone’s PNL is prevented by using the application to
disable all networks in the PNL by default. This prevents the ‘active scanning method’ de-
scribed in Section 2.3 from broadcasting directed probe requests. Instead, the application
sends out a broadcast probe request, which does not contain any specific SSIDs, but requests
all access points in range to respond with a probe response. If this results in a probe re-
sponse being received for a network in the smartphone’s PNL, the application re-enables this
network, allowing the smartphone to connect.
Broadcast probe requests are currently already used by smartphones to find networks that are
not in the smartphone’s PNL. They request all access points (instead of only access points
corresponding to a single SSID) to reply with a probe response.
There are, however, two types of networks that do not respond to these types of requests:

Hidden networks In these networks, the access point will not signal its activity unless ex-
plicitly requested (often called network cloaking). However, these networks have been
considered not to add any security, and the use of them has been discouraged for some
time [Davies, 2005].

Networks with probe responses disabled These only signal their activity using beacon frames,
which will still be picked up by the smartphone even if our strategy is used. However,
it is possible that detection of these networks will take longer, since the Wi-Fi radio has
to be enabled at the time the beacon frame is sent.

Apart from these exceptions, our experiments did not show any degradation of connection
speed or quality. We modified the logic used by the app to keep hidden networks always
enabled when the app was released to the public (see Section 8.3.3) as to not degrade usability
for non-technical users.

8.3.2 Preventing evil twin attacks

Evil twin attacks are already partially mitigated by the strategy described in the previous sec-
tion. Indeed, when this strategy is used, the attacker has no way of knowing which networks
to spoof in order to have the victim connect to the Evil Twin access point.
However, an attacker could still try to spoof popular Wi-Fi networks, such as McDonald’s
Wayport_Access network in the US, or BTWIFI internationally.1. If the popular network
is in a victim’s PNL, its smartphone will still automatically connect to the evil twin access
point. To prevent this from happening, PrivacyPolice also remembers the MAC address of
every access point in the smartphone’s PNL. If the access point uses a MAC address that does
not correspond to the MAC address of an access point previously connected to by the user
(as might be the case when roaming), he/she is asked to explicitly confirm that the network

1A list of popular SSIDs can be found at https://wigle.net/gps/gps/main/ssidstats.

https://wigle.net/gps/gps/main/ssidstats
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is expected to be available at the current location through a notification (see Figure 8.1(a)).
When the user allows the connection, all access points having the corresponding SSID that
are in range are added to a whitelist, allowing the device to connect to them automatically
afterwards.
This strategy does not completely prevent an attacker from mounting a successful attack: if
the attacker is able to guess the exact access point the user has previously connected to, he/she
can also spoof the access point’s MAC address. However, this requires the attacker to have a
priori knowledge about the victim.

(a) Notification asking the user about a
newly encountered access point. Note that
no Wi-Fi connection to the encountered
network is made before the user confirmed
that it should be available.

(b) The settings screen, allowing to enable
either network leakage prevention or Evil
Twin attack prevention separately.

Figure 8.1: Screenshots of Wi-Fi PrivacyPolice in action.

8.3.3 From proof-of-concept to consumer app

After a limited test on our own devices and those of other researchers in the field, we made
Wi-Fi PrivacyPolice available to the general public on October 30th, 2014 through Google’s
Play Store and through the F-Droid open source app store (aimed at more privacy-conscious
users that would be hesitant to install a closed source app requiring access to the list of Wi-Fi
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networks). Together with the public release, we organized two Q&A sessions on Reddit2,
to inform smartphone users about the security risks in Wi-Fi use and to help them with any
questions they have. The code for Wi-Fi PrivacyPolice was made available through GitHub3.
Over the course of the past 2.5 years, Wi-Fi PrivacyPolice has been updated to fix bugs re-
ported by users, to add requested functionality, and to work with later versions of Android.4

Furthermore, the app now contains some simple configuration screens, allowing the user to
enable either network leakage prevention (see Section 8.3.1) or Evil Twin attack prevention
(see Section 8.3.2) separately (see Figure 8.1(b)). As of March 8th, 2017, the app has been in-
stalled by 95 476 users through Google’s Play Store5, who provided an average rating of 4.1/5
stars. The app has been translated into 7 different languages, and has received contributions
from 8 different contributors.

8.4 Comparison to other mitigation strategies

In Section 8.2, general solutions to Wi-Fi attacks (such as using a home network with a
common SSID, but a unique key to thwart evil twin attacks) were already discussed. Apart
from these solutions, some other mitigation strategies have been proposed, ranging from
improvements to the 802.11 discovery protocol [Lindqvist et al., 2009] and MAC address
randomization6 to location-aware Wi-Fi probing [Kim et al., 2013].
While the first category of solutions requires modifications to the protocol (or the implemen-
tation thereof), the second category is interesting because it allows users to protect themselves
by installing an application (thus, without the cooperation of the smartphone vendor). There
are, however, some differences between the proposed solutions and our own mitigation strate-
gies.
First, location-based solutions require information from the GPS sensor. This makes it re-
quired for devices to have GPS enabled when scanning for wireless networks, which may be
infeasible because of the battery impact, or because the device does not possess a GPS chip
at all. Alternatively, the device could use the names of other networks in range in order to

2The Q&A sessions on Reddit can be found at http://www.reddit.com/r/Android/comments/2uyw50/
wifi_privacypolice_prevents_your_smartphone_or/ and http://www.reddit.com/r/androidapps/
comments/2u2ww0/dev_wifi_privacypolice_prevents_your_smartphone/.

3Wi-Fi PrivacyPolice’s source code is available at https://github.com/BramBonne/privacypolice.
4A notable example of a change to comply with newer Android versions is the following: since Android version

6.0, released in October 2015, the Android permission model has changed, requiring Wi-Fi PrivacyPolice to request
‘location’ permissions in order to view Wi-Fi networks in range. Because of its predominantly privacy conscious
userbase, PrivacyPolice had to be modified to thorougly inform users about why the app suddenly required an extra
privacy-sensitive permission, even then causing some users to uninstall the app out of privacy concerns.

5Install numbers for the F-Droid app store are not available.
6Apple reported that, starting with iOS 8, iOS devices will randomize their MAC address when scanning for

networks, as is explained in http://devstreaming.apple.com/videos/wwdc/2014/715xx4loqo5can9/715/
715_user_privacy_in_ios_and_os_x.pdf?dl=1. This randomization is enabled only when both mobile data
and location services are turned off.

http://www.reddit.com/r/Android/comments/2uyw50/wifi_privacypolice_prevents_your_smartphone_or/
http://www.reddit.com/r/Android/comments/2uyw50/wifi_privacypolice_prevents_your_smartphone_or/
http://www.reddit.com/r/androidapps/comments/2u2ww0/dev_wifi_privacypolice_prevents_your_smartphone/
http://www.reddit.com/r/androidapps/comments/2u2ww0/dev_wifi_privacypolice_prevents_your_smartphone/
https://github.com/BramBonne/privacypolice
http://devstreaming.apple.com/videos/wwdc/2014/715xx4loqo5can9/715/715_user_privacy_in_ios_and_os_x.pdf?dl=1
http://devstreaming.apple.com/videos/wwdc/2014/715xx4loqo5can9/715/715_user_privacy_in_ios_and_os_x.pdf?dl=1
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approximate its location. However, it is then easy to consider the case where a network is
enabled only when the name for that network is in range, essentially corresponding to our
own proposed method.
Furthermore, similar to our method for preventing evil twin attacks, location-based solutions
need to explicitly ask for the user’s consent every time a new access point containing a known
SSID is found, which may be less than satisfactory for networks that allow roaming, or when
multiple access points provide access to the same network. This is insurmountable, and can
be considered a policy decision. However, our solution allows the prevention of network
leakage independent of the prevention of evil twin attacks, allowing the user to switch off the
second functionality while still preserving his/her privacy.

8.5 Conclusion
In this chapter, we provided some technical solutions and mitigation strategies for improv-
ing smartphone security and privacy, aiming to tackle research question RQ7. We started by
giving some general recommendations to developers, manufacturers, network providers, and
researchers that can lead towards mitigating the issues described in previous chapters in the
future. With this, we showed that possibilities exist for overcoming the discussed privacy and
security issues at the level of the manufacturer, without having to make usability compro-
mises. We also provided more short-term recommendations to users that want to secure their
mobile devices in meantime.
As our studies confirmed earlier works in that smartphone users might see security as a one-
time (as opposed to a continuous) issue, and that they tend to prefer a set-it-and-forget-it
approach over continuous vigilance, we developed a tool that automatically mitigates Wi-Fi
attacks on smartphones. This tool, called Wi-Fi PrivacyPolice, can be used to prevent both
the leakage of privacy-sensitive information contained in the network identifiers sent out by
users’ devices, and to prevent Evil Twin (or ‘network spoofing’) attacks. It does this by
(ab-)using Android’s WifiManager to dynamically enable or disable networks depending on
whether they should be available. The tool was first developed as a proof-of-concept, but
was afterwards released as a consumer app through official channels, with positive results
concerning ratings and number of installations. Years after its inception, PrivacyPolice is
still running on thousands of devices, including our own, solving smartphone privacy issues
without degrading performance or usability.
The solutions presented in this chapter only provide a part of the puzzle: they aim to solve
technical privacy and security issues, mostly caused by unforeseen side-effects of protocols
used by mobile devices. However, privacy sensitive data is also part of legitimate data col-
lection done by service providers (such as social networks or search engines). This data col-
lection, while legitimate, is often opaque to users of the service. To overcome this problem,
we will approach the privacy issues from a more legal perspective in the next chapter.
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9.1 Introduction

In the previous chapter, we looked at solutions to privacy and security issues from a technical
perspective, providing recommendations to users and developers alike to increase mobile
security. However, not only technical specificities lead to privacy issues for mobile device
users. Indeed, over the past few years, software applications have increasingly been offered
in the form of services, often without requiring a direct payment. Instead of – or in addition
to – directly asking users to pay for the service, many internet services have shifted to using
advertisements or selling user data to third parties as their source of revenue. Historically,
these services have been limited to applications such as social networks, though recently non-
free service providers (such as mobile operators or hardware manufacturers) have also been
using these methods [Lee, 2016; Troianovski, 2013] as a way to increase their revenue, using
privacy-sensitive data as a form of currency. In this chapter, we will look at the intersection
between legal and technical solutions, aiming to offer a strategy that will allow users to make
better privacy decisions.
A problem with paying for services with data instead of money is that, while it is relatively
easy for a user to assess the value of the service itself, it can be difficult to assess the value
and scope of the provided data. This value is not only determined by how much the service
provider profits from it directly (e.g. because it allows the provider to train machine learning
models with it, because it allows to profile the user, or because it allows to provide a better
service or generate customer value), but also by what third parties can do with it. Moreover,
implications of sharing this data with either the service provider or third parties are often
unclear. While there have been initiatives and court cases that try to estimate the value of
personally identifiable information or users’ interests [Steel, Emily and Locke, Callum and
Freese, Ben, 2016; Gliman and Glady, 2015], this information is often only a guess at best,
and is based on what the average user shares instead of on the data of a specific person.
Furthermore, service providers often provide some form of information inferred from the
data (using data mining techniques) to third parties. The user providing the data to the ser-
vice provider more often than not does not possess the same means (in the form of technology
or infrastructure) as the service provider, leaving the user with no idea about which informa-
tion can be inferred from their data [Reiman, 1995; Solove, 2008]. This has led to users
distrusting service providers, opting instead for more ‘guerilla’ techniques of thwarting data
mining algorithms by providing falsified or obfuscated data [Brunton and Nissenbaum, 2013;
Brodkin, 2017a]. Similar to users, it can be difficult for consumer organizations to assess
in what way service providers are handling user data, or to provide metrics for comparing
different service providers in the area of privacy.
To add to this problem, users are often unaware about the data that is collected by the services
they are using. Indeed, as we saw in Chapter 6, users are often unaware about the connections
being made by their devices. Furthermore, as we demonstrated in Chapter 7, users are often
unaware about which data access they granted to apps on their devices in the past.
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We suggest that the only way a user can decide whether a service is worth the data he/she has
to hand over in order to use it, is by providing him/her with some way of knowing exactly
which data is used, and in what way it is used, to generate revenue for the company providing
the service. We propose an API, offered by the service provider to every user, allowing to
query the exact same data third party marketing companies and advertisers have access to
(but limited to information about the specific user accessing the API). The aim is to tackle
the Legibility principle of Human-Data Interaction [Mortier et al., 2014].
This chapter does not aim to provide a catch-all solution to all privacy issues, but rather
proposes a technique that can be easily implemented for existing systems, providing a valid
intermediary step on the path to a complete privacy framework such as the one proposed by
Su et al. [Su et al., 2016].

9.2 Definitions
In order to be able to provide a clear explanation of the information flow in the next sections,
the different actors are defined first:

Service provider The entity providing an (internet) service, requiring the user to provide
some form of personal data in order to use the service. The provided service can be
(but is not limited to) a social network (such as Facebook), a webmail service (such as
Google’s GMail), an app (such as Snapchat) or an Internet-of-Things device or plat-
form (such as a Samsung Smart TV or Google’s Brillo).

User The person using the (internet) service, whose data is being monetized by the service
provider, e.g. in order to keep the service free or cheap, or to provide extra functional-
ity.

Data broker The entity paying or otherwise offering incentives to the service provider in
exchange for users’ data. This can be, for example, a third-party analytics or market-
ing company, an advertising agency or a direct data consumer such as an insurance
company gathering information about its clients.

Trusted third party (TTP) A third party (organization) that is trusted by the user, with dif-
ferent users being able to trust different third parties. This can be an institution founded
with the purpose of defending consumer rights, such as the Electronic Frontier Foun-
dation, Consumer Watchdog, the American Civil Liberties Union or the Consumer
Federation of America. This third party can be either non-profit or for-profit. For most
cases, the TTP can be considered to be a consumer organization. However, the term
‘trusted third party’ (or TTP) is used in this text to include other organizations not
strictly fitting the definition of a consumer organization. For example, an organization
raising awareness on online privacy could also be considered to fit the definition of a
TTP.
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Figure 9.1: Current information flow

A visualization of how information flows between these different parties is available in Figure
9.1. Note that this visualization does not yet include the “trusted third party” as described
above; this party will be introduced as part of the new information flow in the next section.

9.3 The API in practice

The implementation of the privacy API aligns with existing API’s offered to third party data
brokers. These data brokers currently already access data inferred about the users of the
service. The privacy API would expose exactly the same interface to the user as is currently
exposed to data brokers, with the only difference being that instead of aggregated information,
the API only exposes information about the currently logged in user.
The actual responsibility of visualizing the data and its implications to the user is in the hands
of trusted third parties. These organizations are able to provide a service to users, allowing
them to see exactly which data is available to data brokers through the services they are using.
TTP’s effectively act in the same way as data brokers, with the exception that users give them
permission to handle their data beforehand. These TTP’s are then able to aggregate user data
from a variety of services and inform the user about which data is shared by which service
provider. As will be discussed in Section 9.5, the “trusted third party” is not strictly required:
a user could also access the privacy API directly instead of relying on a TTP to visualize
their data. However, we envision that most less technically inclined users will rely on a third
party organization to visualize and interpret the data. This information flow is visualized in
Figure 9.2.
Access control – defining which data will be available through the API – is handled in the
same way as other APIs offered by the service provider to third parties. Users can log in
directly at the service provider, generating a token that can be passed on to the TTP allowing
access to only this user’s data via the API.
Note that offering the privacy API does not expose any proprietary information about the
service provider or its algorithms: it essentially provides information as a black box and on
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Figure 9.2: Proposed information flow

a need-to-know basis to the user, without revealing how inferences on the data were made.
Furthermore, the API does not offer any more information to competitors than is already
available to them if they would buy user data from the first party as a data broker, or if they
would buy this data through a third party.
The existing API (and thus, the privacy API) can take the form of a regular programming
interface, allowing data brokers to query the data directly, but it can also take the form of
a more informal ‘data dump’ containing aggregated user information or statistics, delivered
regularly to the data brokers. An API for the second method would work in much the same
way, allowing the user (or a TTP acting on behalf of the user) to get an up-to-date data dump
of the part of their personal data that is used to generate the information sent to data brokers.
Implementing the privacy API in this way shifts the need for user trust from the service
provider and its third party data brokers to a “trusted third party”. To see why this shift is
needed, consider the motives of both these parties. In the case of the service provider or the
data broker, the main motive is to keep as many people using the service as possible, which
might conflict with the goal of providing transparency. However, for a TTP such as consumer
organization, the main added value to the consumer is exactly this providing of information.
Moreover, since providing transparency is now effectively decoupled from providing the ser-
vice, the user is now able to choose between different organizations analyzing the data from
privacy APIs. Similarly, it is easier to vet well-known consumer organizations than it is to
vet unknown third party data brokers. As a last benefit of this approach, more technically
inclined users are now able to build their own application upon the privacy API endpoint, not
relying on any third party, and allowing for a diverse ecosystem.

9.4 Methods of enforcement
A crucial part of the implementation of a privacy API is that it should operate in exactly the
same way as the API that is provided to data brokers (providing the exact same interface).
This requirement should be enforced to ensure that service providers do not stray from the
original goal of this API.
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The European Union already has strict privacy regulations in place for companies that manage
user data and that want to operate within the EU [Council of European Union, 1995, 2016],
requiring these companies to provide users with an interface to get a complete overview of
all collected user data, and enforcing these requirements by starting lawsuits against non-
compliant companies [Belgian Commission for the Protection of Privacy, 2015]. Different
companies have been implementing this requirement in different ways, with e.g. Google
providing a privacy dashboard containing controls for managing which data is saved in a
Google account and an overview of all data generated for that account.1 While we applaud
the efforts made by different companies to be more transparent about their data collection and
retention practices, there is no standardized way of presenting this information, requiring the
general public to rely on the goodwill of the service providers to provide a clear and complete
overview. Moreover, there is no uniform way of presenting this data, making it difficult to
compare different services.

A limitation shared by most of these approaches that implement the EU’s regulations is that
the user can only see which data the service provider has about them, without knowing which
part of that data is shared with third party data brokers. Moreover, the service provider may
be using data mining techniques to infer extra knowledge from this data, which could also
be shared with data brokers. For example, consider the case of a user who only provided the
service provider with their purchasing habits (e.g. by using a loyalty card at a store), from
which the service provider inferred that this user is a parent. Existing solutions would only
show the user an overview of their purchasing habits, while the privacy API would show
exactly which inferred information was passed on to the data brokers.

A privacy API could be made mandatory by lawmakers in much the same way as the dis-
cussed regulations, but can also provide a more efficient alternative for the service providers
themselves. Indeed, implementing a privacy API might require substantially less effort than
providing a privacy dashboard, giving service providers a more low-cost way of complying
with these regulations. Moreover, this could prove to be a valid alternative to more involved
regulations aiming to limit collection of user data by service providers, as the privacy API
shows exactly the amount and type of data that is provided to third parties, eliminating guess-
work about which data is used only to improve the service itself.

An alternative to enforcement by law is to approach this problem in a similar way to how
security audits work. In this case, third party auditing companies could offer certificates of
compliance to companies that pass an audit standardized by the industry. This maps directly
to standards such as ISO/IEC 27001, where companies are audited to make sure they adhere
to security best practices.

Even without being enforced by lawmakers, or without being incentivized by auditing com-
panies, service providers can implement the privacy API to grow trust and goodwill among

1Google’s activity controls and activity overview are available at https://myaccount.google.com/
activitycontrols and https://myactivity.google.com/myactivity, respectively.

https://myaccount.google.com/activitycontrols
https://myaccount.google.com/activitycontrols
https://myactivity.google.com/myactivity
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their (potential) users, showing that transparency about data collection and monetization is
one of the company’s values.

9.5 Considerations and limitations

Note that the main difference between the privacy API and the API that is being offered to
data brokers is that the privacy API might disclose more identifiable or personal data about the
specific user than the aggregated data that is available through the data broker API. This is a
desired side effect of the proposed approach: as data brokers tend to apply deanonymization
techniques to the gathered data [Schneier, 2015], in which anonymized or aggregated data
is tied back to the original user from whom the data originated, having the most specific
information available is important to see which data could in principle be inferred by the
third party data broker itself. However, this also means that user data is now managed by an
extra party (the TTP), effectively creating a larger attack surface for malicious actors trying
to obtain this data and requiring the TTP to be ‘trusted’ not only with the data itself, but also
with securely managing it.
One limitation of the proposed approach is that it is retroactive: users need to be using the
service before they can assess which data is shared. As such, this approach can not be used
directly to help users decide beforehand whether they want to use a service (in contrast to
proactive approaches like P3P). However, since data aggregators and marketeers care mostly
about recent data, this could be a valid trade-off for the user to make. Similarly, (anonymized)
data about other users of the service could be used by consumer organizations (acting as the
trusted third party for multiple users) to paint a general picture about which data is provided
and to compare different service providers in the area of privacy.
Secondly, the proposed approach only works for service providers that pass on user data to
third parties, which larger service providers are not likely to do, as their data is usually their
value. Service providers can still use all user data internally (either to improve their service
to users, or to mine this data for interesting patterns). To cater to this, we count on security
regulations and audits instead of providing an API (which would put the responsibility in the
hands of the user instead of the service provider).

9.6 Related work

Previous approaches to solving this problem have tried to create ontologies or formalized
languages for describing privacy-sensitive data, like P3P [Cranor et al., 2002] which never
saw widespread adoption despite having been implemented on 15% of the top 5,000 web-
sites [Cranor et al., 2007] and despite being supported in Microsoft’s Internet Explorer and
Edge browsers. Common criticisms to these approaches is that they often fail to capture the
semantics and relationships of the data, that they are difficult to understand for less technical
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users, that they make it difficult to arrive at an agreed-upon vocabulary and that the user re-
quirement of defining privacy preferences beforehand can lead to misdirected settings [Perera
et al., 2016].
Techniques like TaintDroid [Enck et al., 2010] inspect the information flow going from a
user’s (Android) device to the internet, specifically tagging personally identifiable informa-
tion like IMEI numbers and location data being sent by apps to advertisement servers. This
provides great insights in how information is shared by mobile apps to third party data bro-
kers. However, it only shows data shared by the app directly, and cannot distinguish between
data that is sent to the service provider for internal use (e.g. for improving the service) and
data that is sent to the service provider to be shared with data brokers afterwards.
Similarly, the privacy API differs from the ‘right of access’ requirement in the EU’s General
Data Protection Regulation (GDPR) [Council of European Union, 2016] mentioned in Sec-
tion 9.4 in that instead of offering the data that has been provided by the user to the provider,
it offers the data that is available to data brokers. This may exclude certain data that will not
be passed on, and may also include any extra inferred data that is passed on to data brokers.
Very recently, a related proposal has been made by Su et al. [Su et al., 2016], where the
(privacy-sensitive) flow of health data is formalized. They propose to separate the data op-
erator from the data source, mediating between the actual data collector and the data sinks.
Our approach differs from the aforementioned one in that it does not require any modifica-
tions to current implementations and contracts between data collectors and third party data
sinks, pushing for more transparency within the existing process instead. Indeed, our work
rather proposes an intermediate step towards a complete privacy framework, offering a so-
lution which can be easily implemented on top of existing systems without requiring large
modifications.

9.7 Discussion

The privacy API proposal was presented at IEEE EuroS&P 2017’s workshop “Innovations in
Mobile Privacy & Security (IMPS)”, aiming to provoke a discussion about service providers’
data sharing practices. The idea was well received by both the reviewers and the conference
attendants, stating that we are long overdue in holding service providers responsible for how
they are sharing data with third parties.
Conference attendants noted that a major risk with introducing trusted third parties is that a
secondary market might emerge, where these TTP’s would be the ones reselling user data
to marketing companies. Indeed, the TTP can be seen as a service provider too, being able
to share user data with third parties, requiring them to expose a privacy API themselves
if they choose to do so. An important distinction is that the visualization of the data is
now effectively disconnected from the service that is provided, offering consumers a broader
choice. Nonetheless, since the TTP now bears the cost of visualizing information streams
between the service provider and data brokers, it also needs to be able to cover this cost.
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For this reason, we consider trusted consumer organizations – which already provide similar
services, and which rely on consumer trust – to be a good TTP candidate.
It was also mentioned that even without a privacy API, we could require service providers to
include the data shared with third parties as part of their privacy dashboards. This shows an
interesting side effect of presenting our proposal, which is that the ‘third party data sharing’
was considered to be an important omission in current approaches. Even without the imple-
mentation of a privacy API, legislators should consider including this information as part of
their requirements.
The general consensus was that a technical solution in and of itself is not sufficient; legal
aspects, and aspects related to regulation are required to be able to implement a solution such
as the privacy API. The implementation of the privacy API relies on service providers being
required to expose exactly the same information through this API as they do to third parties.

9.8 Conclusion
In this chapter, we formulated an initial proposal for a privacy API which allows complete
transparency about the user data that is passed on by service providers to third parties, provid-
ing a more long term solution to research question RQ7, and catering to collection of privacy
sensitive information that happens with the consent of the users, as discussed in Chapter 7.
We showed that implementing such an API can have benefits for all parties involved: service
providers (in the form of easier compliance and increased user trust), consumers (in the form
of more transparency and comfort, and improved information for making decisions), legisla-
tors (in the form of regulations that are straightforward to implement and audit) and consumer
organizations (in the form of better metrics).
We propose to perform further research based on this concept, implementing a proof-of-
concept privacy API for a small set of service providers handling user data. Thus, this chap-
ter can be considered as a call to action for service providers interested to cooperate with
researchers in the fields of computer science and privacy. This gives innovative companies a
way to show they are serious about privacy, while allowing researchers to assess the feasibil-
ity of a privacy API.



Chapter 10

A look at the future: the Internet of Things

Since the start of the research presented in this dissertation, another category of devices has
gained popularity: “smart devices”, devices that have their functionality extended by adding
sensors or internet connectivity to them, have showed up as consumer products. Some ex-
amples of these devices include smart refrigerators (allowing to keep an eye on the contents
from outside of the house, or to order groceries online), smart lightbulbs (allowing your
smartphone to control them), smart thermostats (learning from their owners to automate their
schedule), smart locks (allowing to be unlocked by your smartphone) and smart plugs (allow-
ing to switch on or off the power for any device in the household). Other types of connected
devices have existed for a longer time, with examples being surveillance cameras or printers
connected directly to the internet, or home routers offering an interface to the public inter-
net. These smart devices have not been limited to households either, with industries such as
healthcare and public safety also using sensors and internet connectivity to extend the func-
tionality of their devices or to provide some form of automation. The rise of smart devices
has lead to the concept of the “Internet of Things” (often shortened to IoT), where everyday
devices are provided with extra functionality by connecting them to the global internet.

As we discussed in the introduction to this dissertation, mobile devices often provide a new
context for existing vulnerabilities, re-surfacing them or making them more acute. The same
comment can be made for IoT devices; these devices are running embedded software, pro-
viding complex functionality (in the form of e.g. a web server), while the manufacturers of
these products are often not software companies, leading to vulnerabilities in the software of
these devices [Barcena and Wueest, 2015]. Adding to this is that manufacturers have little in-
centive to patch or update these devices after they have been sold to consumers, leaving them
vulnerable for the rest of their lifespan. Problems with IoT devices are abundant [Fernandes
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et al., 2016; Hunt, 2017], spawning even Twitter accounts1 created with the sole purpose of
pointing out issues with these devices. While we limit ourselves to the discussion of mobile
devices in this dissertation, we provide this short addendum about IoT devices to discuss how
the same problems will surface for IoT devices.
To see why these security issues are not always obvious, consider the case of a connected
lightbulb, allowing its owner to control the lights in his/her home through a smartphone app.
If an attacker is able to capture data transmitted to or from this lightbulb (e.g. through the
same Wi-Fi attacks that have been possible for decades), he/she might be able to reason on
the current occupation of the home, or the state of the members of the household. This could
enable burglars who can determine the best moment to enter the home, by using this data to
get an indication of how many people are in the house, or to assess whether the members of
the household are asleep. Note that even encrypting the datastreams would not completely
mitigate this threat: being able to see the only the existence of datastreams might be sufficient
to make a calculated guess.
Active attacks on IoT devices can lead to even more dangerous scenarios: researchers have
demonstrated the ability for an attacker to strobe connected smart lights at a frequency which
may trigger seizures in people suffering from photosensitive epilepsy [Ronen and Shamir,
2016]. Combined with the fact that these same researchers were also able to infect the same
lightbulbs with a worm that allows malware to spread across an entire city [Ronen et al.,
2016], these attacks can have disastrous effects.
Security issues in IoT devices do not only impact the devices themselves or their owners: in
October 2016, hunderds of thousands of IoT devices infected by the Mirai malware were used
to mount a Distributed Denial of Service (DDoS) attack on DNS service provider Dyn [Woolf,
2016]. This attack rendered a large part of popular services (such as Amazon, Netflix and
Reddit) unavailable for a period of almost 12 hours. The same type of malware has also been
used to permanently render the IoT devices themselves unusable, in an attack known as a
Permanent Denial of Service (PDoS) attack [Radware Security, 2017]. The Mirai malware is
not an isolated case: lots of different IoT malware families exist, many of them being used to
execute DDoS attacks [Symantec Security Response, 2016].
We performed a short study with a few of our own personal connected devices, consisting
of a Xiaomi Mi Band2, a Garmin Vívosmart3, a set of Cubesensors4 and a Gigaset Elements
starter kit5. We were able to find all kinds of different security and privacy issues, ranging
from not using certificate pinning6 in the mobile app when sending data to the server (as was

1A popular Twitter account dedicated to pointing out problems in IoT devices, which amassed over 200 000
followers at the writing of this text, is @internetofshit, available at https://twitter.com/internetofshit.

2More information about the Xiaomi Mi Band is available at http://www.mi.com/en/miband/.
3More information about the Garmin Vívosmart is available at https://buy.garmin.com/en-US/US/p/

154886.
4More information about Cubesensors is available at https://cubesensors.com/.
5More information about Gigaset Elements is available at http://www.gigaset.com/hq_en/smart-home/.
6As we explained in Section 8.2.2, certificate pinning ensures that the certificate for the service is embedded in

the app, instead of requiring it to be validated by the system’s certificate chain.

https://twitter.com/internetofshit
http://www.mi.com/en/miband/
https://buy.garmin.com/en-US/US/p/154886
https://buy.garmin.com/en-US/US/p/154886
https://cubesensors.com/
http://www.gigaset.com/hq_en/smart-home/
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Table 10.1: Results of a short study on IoT devices.

Mi Band Vivosmart Cubesensors Gigaset Elements
Certificate pinning 7 7 7 7

Encryption 3 3 7 3

Informs user about
data collection

7 3 7 3

the case for all four tested devices), over sending a vast amount of personally identifiable
information (PII) – such as the smartphone’s IMEI and its Wi-Fi MAC address – to the ser-
vice provider without informing the user (as was the case for the Mi Band), to not having
any notable security at all (as was the case for the Cubesensors, sending all gathered sensor
data over an unencrypted HTTP connection, and having the keys used for local ZigBee com-
munication stored in plain text on the device’s SD card). An overview of this short study is
available in Table 10.1.
As an increasing number of devices are becoming internet-enabled, care must be taken that
they are not susceptible to the same privacy and security issues as were present in earlier
technologies. We envision that regulations will be essential in the IoT space. First, consumers
should be informed about data collection practices of the manufacturers of internet-enabled
devices through methods such as the privacy labels proposed by Kelley et al. [Kelley et al.,
2009], or our own Privacy API from Chapter 9. Second, these manufacturers should be held
accountable for their update and security policies, requiring them to provide support and
updates for their devices similar to the minimum warranty periods imposed by the European
Union. These measures are not only important to the consumers themselves: as we stated
before, insecure IoT devices often have an impact on others as well. Indeed, requiring these
devices to be secure might well be important to safeguard the security of the internet as we
know it.
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Part III: Conclusion

In the final part of this dissertation, we looked at ways in which mobile device privacy and
security can be improved. Taking into account the results from our studies in the second part
of this thesis, we keep in mind the usability factor when presenting such improvements.
We started by providing more technical countermeasures to different groups of involved ac-
tors, such as developers, manufacturers and network or service providers, referring back to
the issues presented in the first part. Taking into account the fact that smartphone users tend
to prefer a set-it-and-forget-it approach to smartphone privacy (again as shown in Part II), we
also developed a tool that automatically mitigates Wi-Fi attacks on smartphones. This tool,
called Wi-Fi PrivacyPolice was first developed as a proof-of-concept, but was afterwards
released as a consumer app through official channels. The app allowed us to smartphone
privacy issues without degrading performance or usability.
Going further than only technical solutions to privacy, we also present our thoughts on how
we can improve the privacy and transparency for data streams of users’ personal and sensitive
information, collected by service providers as part of their legitimate operation. Our initial
proposal takes the form of a “privacy API”, allowing users to see exactly which personal data
is shared with third parties by service providers. We showed that implementing such an API
can have benefits for all parties involved, and that it allows also consumer organizations to
be included in the process. We consider this concept to be a first step towards future work
in privacy and security, allowing interested service providers to cooperate with researchers in
the fields of computer science and privacy.
We closed the last part of this dissertation with a comparison between the state of Internet
of Things (IoT) devices now with that of smartphones and mobile devices some years ago.
Indeed, as we showed to be the case with smartphones some years ago in the first part of
this dissertation, IoT devices will now provide a new context for existing vulnerabilities,
re-surfacing them or making them more acute. We provided some examples of this, and
performed a short study ourselves to show that IoT devices in general could benefit from
better security.
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11.1 Conclusion

In this work, we showed that the shift to mobile devices (and in particular, smartphones) has
made a significant impact on privacy and security of internet users. Not only do these devices
make it so that people are always connected (as we showed, mobile users connect to 8 differ-
ent Wi-Fi networks on average in a 30-day period), with more data being able to be gathered
about them, they also introduce some new security risks and provide a new context for older
security risks. We gave an example of these issues (covering research question RQ1), show-
ing that they enable any third party to surreptitiously track the movements of smartphone
users by passively monitoring their Wi-Fi signals. We demonstrated that this can be done at
a very low cost by using Raspberry Pi’s (with software designed to operate within the limited
resources of these devices), without requiring active cooperation from the users themselves,
and without requiring them to be connected to an access point. We demonstrated this in the
context of a three-day long music festival, by tracking 29% of the 100 000 festival visitors.
These issues go even further: as we demonstrated later on in a study, these signals allow to
map between 64% and 88% of mobile device users to at least one previously visited physi-
cal location not in range of our detectors. We showed that this tracking does not need to be
privacy-invasive: data can be used anonymously to enable research of movement patterns.
We also provide an example of a potential application: an opportunistic communication app
that can be used at mass events such as music festivals.
Since publishing our work on Wi-Fi tracking, similar techniques have been employed by
many different entities, ranging from public bodies, such as the city of London and the city of
New York, to marketing companies trying to build profiles of passers-by. Furthermore, dif-
ferent Mobile Location Analytics (MLA) companies have popped up, specializing in tracking
devices through a variety of signals. Notable examples of MLA companies are Renew and
Accuware (formerly Navizon). Similarly, commercial alternatives to wardriving databases
used to determine a location based on the Wi-Fi networks that are in range, have appeared
in the past years, with notable examples in this space being Combain, Skyhook and, again,
Navizon.
Some of these companies offer smartphone users a way to opt out of being tracked by their
systems, requiring them to enter their device’s Wi-Fi MAC address on an opt-out page. Sim-
ilarly, commercial Wi-Fi location databases sometimes allow networks to be excluded from
their lists by not saving their data if the _nomap tag is appended to the network’s SSID. Un-
fortunately, not all companies offer a way to opt out. Moreover, due to the fact that these
systems are opt out rather than opt in, users need to be aware of this tracking occurring, with
the need to opt out of all different MLA services individually. The “Future of Privacy Forum”
tries to alleviate this last problem at least for smartphone users with the “Smart Places” ini-
tiative1, offering them with a way to opt out from different MLA services at once. We argue

1The Smart Places website, offering an explanation of Wi-Fi tracking, and ways to opt out, is available at https:
//smart-places.org/

https://smart-places.org/
https://smart-places.org/
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that requiring these MLA companies to use an opt in mechanism, offering incentives to users
that allow companies to track them, is fairer to users than the current opt out strategy, and
should be required by law.
Apart from allowing users to be tracked (both on a small scale, through detectors, as well as
on a large scale, based on their broadcasted networks), we showed that other security issues
were prevalent for mobile device users (covering research question RQ2): over one third of
the Wi-Fi networks that smartphone users connect to do not have any encryption enabled
(allowing a third party in range to monitor traffic), with 45% of users being susceptible to
Evil Twin attacks (where the third party itself can lure the smartphone into connecting auto-
matically to its malicious network). Moreover, 13% of connections made by apps on users
devices are insecure, happening both without any form of (SSL) encryption by the app and
over unsecured networks, allowing for interception of data by eavesdroppers.
To aid other researchers in assessing the prevalence of other security and privacy issues in
wireless networks, we also introduced the Wicability platform, which can be utilized as a
tool to quantify the impact and remediation rate of protocol vulnerabilities. We demonstrated
the utility of the system by providing a case study based on our own work that shows how
the Wicability platform can be used by researchers to assess the impact of such newfound
techniques and vulnerabilities.

After explaining the different privacy and security risks inherent to smartphone use in Wi-
Fi networks, we went on to create and assess smartphone users’ awareness about these
risks (covering research question RQ3). To raise awareness, we created a setup (named
SASQUATCH) consisting of a public display that confronted passers-by with their private
information that we were able to infer surreptitiously from their devices. After creating
awareness, we used the setup to inform users about how they could improve their smart-
phone security. This was highly effective, as 76% of users indicated they were not aware
about at least a part of the issues we informed them about. Specifically, 52% was not aware
that the aforementioned Evil Twin attack is possible. Furthermore, 38% of users we surveyed
as part of the study on Wi-Fi Privacy decisions were unaware about unsecure connections
being made by their devices.
Even though they are often unaware, users are worried about these dangers: our study on
Wi-Fi privacy decisions showed that for 91% of data that was found to be transmitted in an
insecure fashion (the 38% number from the previous paragraph), participants were concerned
about an eavesdropper having access to this data.
Importantly, we showed that an increased awareness about security and privacy issues did not
translate to better security practices (covering research questions RQ4 and RQ6). Indeed,
even though users with a higher expertise in computer networks tend to be more aware about
the (insecure) connections that are made by apps on their smartphones, they were just as
likely as others to connect to insecure Wi-Fi networks.
Analyzing users’ decision making regarding permissions for apps on their devices, and tack-
ling research question RQ5, we showed that smartphone users are relatively comfortable with
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the information access they are granting to apps at the moment this access is allowed. We
also showed that when asked about this at a later time, giving explicit examples of which data
is available to the app developer, this level of comfort decreased substantially.
A recurring theme in our studies is that the kind of specific, personalized scenarios such as
those used in SASQUATCH may help to better inform users about security and privacy issues:
this was suggested in the study on Wi-Fi privacy on mobile devices, where participants were
worried when presented with specific scenarios about unencrypted connections made by their
apps on insecure networks, as well as in the study on app permissions, where users reported
a lower comfort level when given examples of data access for different apps on their devices.
This finding corresponds to results from earlier studies, such as a study on browser warnings
by Felt et al. [Felt et al., 2015] (and many others referenced therein), which describe that
people are more likely to comprehend and comply with a security warning if it provides
specific, explicit, and comprehensive details about the consequences of ignoring it.

As our studies confirmed earlier works in that smartphone users might see security as a one-
time (as opposed to a continuous) issue, and that they tend to prefer a set-it-and-forget-it
approach over continuous vigilance, we developed a tool that automatically mitigates Wi-Fi
attacks on smartphones (covering research question RQ7). This tool, called Wi-Fi Privacy-
Police, can be used to prevent both the leakage of privacy-sensitive information contained
in the network identifiers sent out by users’ devices, and to prevent Evil Twin (or ‘network
spoofing’) attacks, without degrading performance or usability. It does this by (ab-)using An-
droid’s WifiManager to dynamically enable or disable networks depending on whether they
should be available. The tool was first developed as a proof-of-concept, but was afterwards
released as a consumer app through official channels, with great results concerning ratings
and number of installations.
Apart from our automated solution, we also provided some general recommendations on
smartphone security to different stakeholders: the smartphone users themselves, the network
providers and ISPs, the developers and the smartphone manufacturers.
Recently, we see that the industry has been implementing measures to provide additional se-
curity and privacy to smartphone users. For example, Android O (to be released in the second
half of 2017) will update its Wi-Fi stack in order to randomize MAC addresses in probe re-
quests for all supported chipsets, and Google is working with vendors to add support in the
firmware as well [Hogben, 2017]. Incidentally, another action taken by Google in Android
O is to remove unnecessary Information Elements from probe requests, also thwarting tech-
niques that fingerprint devices based on this information (such as our own [Robyns et al.,
2017]), further improving privacy to their users. These changes to device identifiers go even
further, also making sure that apps will no longer be able to use permanent device identifiers
that can not be reset by the user. This is a step in the right direction, provided that users are
clearly informed about the fact that they have the ability to opt-out of tracking by resetting
device identifiers that will still be available, such as the Google Play advertising ID, providing
that apps will target the newer Android version (apps targeting an older version of Android
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will still be able to use the persistent SSAID), and providing device manufacturers are willing
to add in support for MAC address randomization.

As a last way to improve privacy and security for mobile device users, we formulated a pro-
posal for more transparency in the way user data that is handled by service providers, and
how this data is used for monetization. This proposal takes the form of an API that allows
users of a service to see exactly which information is shared by the service provider to third
parties. We argued that implementing such an API can have benefits for all parties involved,
and that it also allows consumer organizations to be included in the process. While not a
complete solution, we hope that this proposal can provide a starting point to researchers in
different fields (not only in computer science, but also in e.g. law studies) to reason about
how privacy-sensitive information is used in a world where an increasing amount of services
is financed by monetizing user data. With grassroots organizations on privacy, such as the
Future of Privacy Forum2 or the CAPrice community3 emerging, existing consumer rights
organizations, such as the Electronic Frontier Foundation4 and the American Civil Liber-
ties Union5, putting an increased focus on people’s privacy, and lawmakers catching up to
existing technologies [Council of European Union, 2016], we are optimistic about smart-
phone users’ privacy in the future. However, these organizations are serving a cause that
will never end: with new technologies emerging come new challenges, which will require
cooperation between different fields, and between the research community and lawmakers,
in order to safeguard the privacy and security of the users. Already, we are seeing laws being
passed in the United States to eliminate rules being put in place by the Federal Communi-
cations Commission to require users’ opt-in consent before selling or sharing web browsing
history [Brodkin, 2017b].
Some of the topics in this work required thorough ethical consideration. As we discussed
throughout this dissertation, multiple technologies and methods that we developed can be
used to gather privacy-sensitive information about random people, and could even aid in
stalking. Indeed, when performing our early experiments, we noticed how simple it was to
identify our own colleagues, and we were astonished by the amount of personal information
we were able to gather about these people (including past whereabouts, names of friends, and
the times at which they were in the lab). For this reason, we consulted with both the univer-
sity’s legal team, and with the ethical commissions and/or legal themes of the organizations
we worked with, on multiple occasions. As we noted in Section 2.8, anonymization of this
type of data is notoriously difficult, and the approach of one-way hashing data that can be
used to identify a person is not sufficient. Yet, this is exactly what most Mobile Location
Analytics companies are doing. Indeed, in order to implement an opt-out service based on

2The website of the Future of Privacy Forum is available at: https://fpf.org/.
3The website of the Collective Awareness Platform for Privacy Concerns and Expectations (CAPrice) community

is available at: https://www.caprice-community.net/.
4The website of the Electronic Frontier Foundation (EFF) is available at: https://www.eff.org/.
5The website of the American Civil Liberties Union (ACLU) is available at https://www.aclu.org/.

https://fpf.org/
https://www.caprice-community.net/
https://www.eff.org/
https://www.aclu.org/
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providing the MAC addresses of a device, a MLA company needs to look up any data points
corresponding to this exact MAC address, thus being able to uniquely identify the device and
its user in their records. The same remark can be made for other entities mentioned in this
work, such as consumer organizations acting as the Trusted Third Party in the Privacy API
proposal, who also require high ethical standards for managing sensitive user data.
The research leading up to this dissertation started out on very strong security-related top-
ics, related to wireless protocols. As the research progressed, it became clear that these
implementation issues were not the only problem, and that increased awareness among the
general public was needed. Not only does awareness mitigate the “people problem” in se-
curity [Schultz, 2005], the increased consumer demand for security also puts an increased
pressure on manufacturers and other companies involved in smartphone development to im-
prove security on their devices. Attempting to raise awareness, we feared that doing so might
feel patronizing to the general public. Fortunately, the opposite proved to be true: after
demonstrating the SASQUATCH system only once, a large number of requests started com-
ing in for talks, showing that even people who are not knowledgeable about technology are
greatly interested in knowing how they can improve security on their devices. This resulted
in a number of talks6 and other ways of public outreach, which showed the importance of
informing the general public about security issues (and, more broadly, research issues) that
are relevant to them. On the other hand, scaring people just in the name of security is not
sufficient: it is of crucial importance that these issues are explained thoroughly, to avoid the
risk of the audience assuming all technology is insecure, causing them to be alienated from
technology altogether.

11.2 Future work
The data collected using the WiFiPi system, together with the results of the simulation oppor-
tunistic routing protocols using data collected in a similar fashion, were originally meant to
create and finetune an opportunistic messaging app that could be used in the context of mass
events (and, specifically, music festivals). In the early years of smartphone availability, pro-
tocols such as Wi-Fi Direct or Apple’s Multipeer Connectivity framework were still in their
infancy, and implementations differed widely between devices, which hindered creating an
actual opportunistic messaging app and testing it on a large scale. Nowadays, Android has a
standardized implementation of Wi-Fi Direct that is available across the majority of Android
devices, which would allow to develop such an app based on our results.
Furthermore, we expect that similarities between these message passing algorithms and other
fields like epidemiology could foster interesting research, providing the ability to compare
the spread of messages to the spread of diseases. This could in turn allow for better disease
spreading models, influenced by message passing algorithms, and vice versa. Since these

6An example of such a talk, given at TEDxGhent 2014, is available on YouTube at https://www.youtube.
com/watch?v=2GpNhYy2l08.

https://www.youtube.com/watch?v=2GpNhYy2l08
https://www.youtube.com/watch?v=2GpNhYy2l08
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technologies would also open a new attack vector to malicious actors, allowing the spreading
of malware [Ronen et al., 2016], this might lead to a direct mapping between the spread of
computer viruses and biological viruses.
A very recent new standard from the Wi-Fi alliance, called Wi-Fi Aware (or Neighbor Aware-
ness Networking), allows supported devices to discover and connect directly to each other
without the need for an access point. This technology, which will be supported starting from
Android O (to be released in the second half of 2017), would also allow easier development
of opportunistic messaging apps. Furthermore, support for Wi-Fi Aware would also entail
new privacy issues related to device discovery, which might again have an impact on the dis-
cussed tracking technologies. It would be interesting to study what the effect of these new
technologies is on the issues described throughout this thesis.
The Privacy API as laid out in Chapter 9 is currently just an initial proposal, presented to
other researchers and to the industry as a potential next step in solving ambiguity on the way
personal data is handled and monetized by service providers.
Finally, as we explained in Chapter 10, we expect the same privacy and security issues to
arise for devices in the context of the Internet of Things: just as smartphones provided a
new context for existing vulnerabilities, these devices will again change the threat landscape,
re-surfacing vulnerabilities that were deemed low-risk in the past as threats that now have a
major impact on privacy-sensitive data. With these devices running insecure software that
is rarely updated or patched, there is an interesting future for security and privacy research
ahead. We are optimistic about platforms such as IBM Watson or Android Things, which aim
– among other things – to provide security as part of the infrastructure and protocols, rather
than as part of the application itself.



Appendices





Bijlage A

Nederlandse Samenvatting (Dutch Summary)

Het gebruik van smartphones en andere mobiele toestellen is sterk toegenomen in de voorbije
jaren. Deze toegenomen populariteit heeft ook geleid tot een veranderd security- en privacy-
landschap, doordat persoonlijke apparaten vaker worden uitgerust met een grote hoeveelheid
aan sensoren. Deze laten toe om elke stap van de gebruiker te volgen, en beschikken over een
veel groter aanvalsoppervlak dan oudere, meer statische apparaten. Dit verleent verschillende
soorten actoren, waaronder hackers, overheden en legitieme aanbieders van diensten, toegang
tot een grote schat aan gebruikersdata.
In dit proefschrift onderzoeken we wat de huidige status is van privacy en security op smartpho-
nes, bepalen en verhogen we het bewustzijn van smartphonegebruikers rond deze problema-
tiek, en voorzien we oplossingen om security en privacy te verhogen op mobiele toestellen.
Om aan te tonen hoe eenvoudig het is om data van smartphonegebruikers te verzamelen be-
schrijven we een mechanisme dat kan gebruikt worden om bezoekers van massa-evenementen
te volgen zonder hun medeweten. We laten zien dat dit geïmplementeerd kan worden aan
een zeer lage kostprijs, en dat dit ons toelaat om de bewegingen van 29% van de bezoe-
kers van een populair muziekfestival te volgen. We tonen aan hoe deze technieken gebruikt
en misbruikt kunnen worden in verschillende scenario’s; specifiek door de verzamelde data
te gebruiken om verschillende opportunistische routeringsalgoritmes te vergelijken, die op
hun beurt gebruikt kunnen worden voor ad-hoc communicatie op massa-evenementen. We
voorzien verder ook een open platform voor onderzoekers dat gebruikt kan worden om de
impact en remediëringssnelheid van vergelijkbare kwetsbaarheden in draadloze protocollen
te kwantificeren.
Om smartphonegebruikers van deze problematiek bewust te maken, en om ze uit te leggen
hoe ze zichzelf kunnen beschermen, voorzien we een methode om deze gebruikers te in-
formeren wanneer ze draadloze netwerken gebruiken. Hierbij wordt privacygevoelige (maar
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geanonymiseerde) informatie over voorbijgangers weergegeven op een publiek scherm; een
opstelling die later ook gebruikt wordt in talks rond securitybewustmaking. Resultaten van
onze gebruikersstudies tonen aan dat specifieke, gepersonaliseerde voorbeelden kunnen hel-
pen om gebruikers beter te informeren over security- en privacyproblemen (waarbij het be-
wustzijn van 76% van de deelnemers in onze studie verhoogd werd), en dat een verhoogd
securtitybewustzijn leidt tot een verhoogde bereidheid van 81% van de gebruikers om hun
apparaten beter te beveiligen. Onverwachts tonen we in een latere studie aan dat een ver-
hoogd bewustzijn zich niet vertaalt in een betere securityhygiëne.
Hiernaast onderzoeken we ook het privacy- en securitygedrag van smartphonegebruikers in
twee verschillende studies. In de eerste studie onderzoeken we hoe bewust gebruikers zich
zijn van de verbindingen die gemaakt worden door apps op hun apparaat, waarbij de vei-
ligheid van zowel de Wi-Fi netwerken als van de gemaakte verbindingen in acht worden
genomen. In de tweede studie breiden we de Paco ESM tool uit om te onderzoeken wat
de redenen zijn voor Androidgebruikers om applicaties te installeren of te verwijderen, en
om hun motivatie te kennen voor het toestaan of weigeren van toegang tot één van de ver-
schillende permissies op het moment dat ze deze beslissingen maken. We onderzoeken ook
hoe comfortabel en bewust deze gebruikers zich achteraf (enkele weken later) zijn van de
gemaakte beslissingen.
We voorzien aanbevelingen voor verschillende belanghebbenden (ontwikkelaars, fabrikanten,
aanbieders van netwerken, onderzoekers en gebruikers van mobiele toestellen) omtrent hoe
de privacy en security op mobiele toestellen kan verhoogd worden zonder impact te hebben op
het gebruiksgemak. Enkele van deze werden reeds geïmplementeerd door de ontwikkelaars
van mobiele besturingssystemen (zoals het geval is bij enkele van de gemaakte verbeteringen
in Android O). Een aantal van deze aanbevelingen worden geïmplementeerd als een applicatie
die automatisch Wi-Fi aanvallen voorkomt op Android smartphones, en die aan het grote
publiek beschikbaar wordt gemaakt. Bijkomend formuleren we ook een voorstel voor het
verhogen van transparantie bij het delen van gebruikersdata door dienstverleners aan derden.
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B.1 Recruitment survey questions

Disclaimer: the questions listed below are direct translations of the actual questions in Dutch,
and may vary slightly in wording because of this translation.

Q1: Do you own an Android device which you use outside of your own home?
Options: Yes, No

Q2: Did you ever change the settings of your home network? e.g. the Wi-Fi password
or the name of the network
Options: Yes, No, Don’t know

Q3: Would you be able to explain what WEP, WPA and WPA2 are?
Options: Yes, No

Q4: If yes on the previous question, please explain what WEP, WPA and WPA2 are
Open text response

Q5: How would you rate your own expertise in computer networks?
Options: Very high, High, Average, Low, Very low

Q6: What is your gender?
Options: Male, Female

Q7: What is your birth year?
Open text response

Q8: What is your highest earned degree?
Options: None, Elementary school, Lower part of high school, High school, Bachelor, Master

B.2 Exit survey questions

Disclaimer: the questions listed below are direct translations of the actual questions in Dutch,
and may vary slightly in wording because of this translation.
For each survey, at most three Wi-Fi networks the user connected to are chosen. For each
network, at most three apps are chosen for which the participant is surveyed.
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B.2.1 Introductory questions

Q1-3: Within the context of app <app name>, how concerned are you about the privacy
of the following data?

• Username

• Password

• Data (messages, information within the app, pages visited from the app, . . . )

Options (for each of the different data types): Not at all concerned, Slightly concerned, Some-
what concerned, Moderately concerned, Extremely concerned
This question is asked for at most three apps that set up a network connection per Wi-Fi net-
work, for a total at most three Wi-Fi networks. This creates at most 27 (3 apps×3 networks×
3 data types) questions, with the total often being much lower as questions for the same app
are consolidated.

Q4: How would you estimate the security of your home Wi-Fi network?
Options: Very bad, Bad, Acceptable, Good, Very Good, Don’t know / I don’t have wireless
Internet at home

B.2.2 Network questions

Help text: On <connection time> your device was connected to the <network name> Wi-Fi
network. You provided the following information about this network: <user response>.

Q5: In which of the following categories would you put the owner of network <network
name>?
Options: Family (own home network), friend of family (someone else’s home network), em-
ployer (own company network), other company (company network), public institution (city
network, museum network, . . . ), commercial institution (restaurant or cafe network, super-
market network . . . ), roaming network of home Internet provider (<examples of local ISP’s>),
other

Q6: To what extent do you agree with the following statement: “The owner of <network
name> is permitted to see all information (see previous page) of app <app name>”
Options: Strongly disagree, Disagree, Neither agree or disagree, Agree, Strongly agree

Q7: To what extent do you agree with the following statement: “A random person in
the neighborhood of <network name> (e.g. someone standing on the street close to the
building) is permitted to see all information (see previous page) of app <app name>”
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Options: Strongly disagree, Disagree, Neither agree or disagree, Agree, Strongly agree
This question is only surfaced if the network is not secured with WEP, WPA, WPA2 or WPA-
enterprise, and if the app is using unencrypted connections.

Q8: How likely would you say that the app <app name> actually sent data over the
<network name> network?
Options: Extremely unlikely, Unlikely, Neutral, Likely, Extremely likely

Q9: How would you rate the security of the <network name> network?
Options: Much less secure than my home network, Less secure than my home network, As
secure as my home network, More secure than my home network, Much more secure than
my home network

Q10: To what extent do you agree with the following statement: “I trust the owner of
<network name>”
Options: Strongly disagree, Disagree, Neither agree or disagree, Agree, Strongly agree

B.2.3 General questions

Q11-23: While using the internet, have you ever done any of the following things?
Both this question wording and the relevant tools and options from [Pew research center,
2014] are used. These tools and options are:

• Used a temporary username or email address

• Added a privacy-enhancing browser plugin like DoNotTrackMe or Privacy Badger

• Given inaccurate or misleading information about yourself

• Set your browser to disable or turn off cookies

• Cleared cookies and browser history

• Used a service that allows you to browse the Web anonymously, such as a proxy server,
Tor software, or a virtual personal network (VPN)

• Encrypted your phone calls, text messages or email

• Decided not to use a website because they asked for your real name

• Deleted or edited something you posted in the past

• Asked someone to remove something that was posted about you online
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• Used a public computer to browse anonymously

• Used a search engine that doesn’t keep track of your search history

• Refused to provide information about yourself that wasn’t relevant to the transaction

Options: Yes, No, Not applicable to me, Don’t know

Q24: Do you think that people should have the ability to use the internet completely
anonymously for certain kinds of online activities?
This question is derived directly from [Pew research center, 2014].
Options: Yes, No, Don’t know

B.2.4 Connection awareness questions

Q25: The app <app name> has effectively been sending data over the network <network
name>. Were you aware of this happening?
Options: Yes, No

B.2.5 Feedback question

Q26: Comments? Questions? Did we miss something? Let us know!
Open text response
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Responses to all questions are required.

C.1 In-situ questions

C.1.1 App installation scenario

The order of possible responses to the questions for the in-situ survey is always randomized
(with the exception of the ‘Other’ option, which is always placed last).
Q1: Which factors influenced your decision to install <app>? (select all that apply)

• App rating

• App popularity

• Individual user reviews

• Requested permissions

• The company creating the app

• The app is free / price is reasonable

Q2: Why did you install <app>? (select all that apply)

• The app has fewer permissions than other apps like it

• My friends/family use it

• I want to try it out

• I was required to install it

• The app is part of a product/service that I use

• The app is useful

• The app is cool or fun to use

• I trust the app or the company making the app

• It was the only app of its kind (no other apps provide the same functionality)

• I was offered something in return (e.g. credits, monetary rewards, discount)

• I don’t know

• Other: __________



C.1 In-situ questions 185

C.1.2 App removal scenario

Q1: Why did you remove <app>? (select all that apply)

• The app required permissions I wasn’t comfortable with granting

• I no longer use the app

• To free up space or speed up my device

• Because of advertisements in the app

• Because of in-app purchases

• I didn’t like the app

• The app is crashing / very slow

• The app is not working as expected

• I don’t know

• Other: ___________

C.1.3 Permission grant scenario

Q1: Why did you choose to allow <app> to access your <permission>? (select all that
apply)

• I want to use a specific feature that requires this permission

• I think the app won’t work otherwise

• I trust the app developer

• Because the app is popular

• I won’t be able to grant this permission later

• I have nothing to hide

• I wanted the permission screen to go away

• Nothing bad will happen

• I didn’t know I did that

• The app developer already has this information about me

• Other: ___________
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Q2: To what extent do you agree with the following statement: “I don’t mind giving
<app> access to my <permission>”?

• Strongly disagree

• Disagree

• Neither agree or disagree

• Agree

• Strongly agree

C.1.4 Permission deny scenario

Q1: Why did you deny <app> to have access to your <permission>? (select all that
apply)

• I do not use the specific feature associated with the permission

• I think the app shouldn’t need this permission

• I expect the app will still work without this permission

• I consider the permission to be very sensitive

• I don’t trust the developer enough to provide this information

• I can always grant it afterwards if I change my mind

• I wanted the permission screen to go away

• I think something bad might happen if I provide this permission

• I don’t know

• I didn’t know I did that

• Other: ___________

C.2 Exit Survey
Each of the questions Q1-Q15 have the same three possible answers:

• Yes

• No
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• I don’t know what this is / means

Q1: Have you ever blocked another person on a social network?
Q2: Have you ever deleted an online account?
Q3: Have you ever downloaded your historical data from an account (e.g. Google Take-
out)?
Q4: Have you ever changed the privacy settings for any of your accounts?
Q5: Have you ever read part or all of an online privacy policy?
Q6: Have you ever decided not to install an app on your mobile device because of per-
missions it requested?
Q7: Have you ever uninstalled an app on your mobile device because of permissions it
used?
Q8: Have you ever declined to give an app permission to do something on your mobile
device?
Q9: Have you ever declined to use a website because it asked for information you did
not want to provide?
Q10: Have you ever stopped using an Internet service or website because you were
concerned about how it might use your personal information?
Q11: Have you ever cleared cookies and/or browser history?
Q12: Have you ever installed software to block ads?
Q13: Have you ever installed software to stop websites from tracking what you do on-
line?
Q14: Have you ever used a password manager?
Q15: Have you ever used account settings to limit the data that could be collected or
used?
Q16: Which of the following best describes the time at which you try new technology?

• As soon as the technology is available / among the first people to try it

• Sooner than most people, but not among the first

• Once many people are using it

• Once most people are using it

• I don’t usually buy or try out new technology

Q17: When an Internet company collects data about you while you are online, overall
how beneficial or harmful is that likely to be for you?

• Extremely beneficial

• Moderately beneficial

• Slightly beneficial
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• Neither beneficial nor harmful

• Slightly harmful

• Moderately harmful

• Extremely harmful

In questions Q18-Q22, we used a 5-pt Likert scale to measure comfort.
Q18: How comfortable or uncomfortable are you with online companies collecting data
about what you do online?

• Extremely Comfortable

• Moderately Comfortable

• Somewhat Comfortable

• Slightly Comfortable

• Not at all Comfortable

In addition to the 5-pt comfort scale, for questions Q19-Q22 users could also select an option
"I don’t know the app" if they do not recognize the app in the question. The apps we showed
users were ones on their phones, so most of the time apps should be recognized.
Q19: How comfortable would you be with the <app name> app knowing your home and
work address? (only surfaced if an app exists that was given the Location permission)

• Extremely Comfortable

• Moderately Comfortable

• Somewhat Comfortable

• Slightly Comfortable

• Not at all Comfortable

• I don’t know the app

The question answer options for Q20-Q22, were the same as in Q19.
Q20: How comfortable would you be with the <app name> app knowing the phone
numbers of your friends and family? (only surfaced if an app exists that was given the
Contacts permission)
Q21: How comfortable would you be with the <app name> app knowing who is calling
you? (only surfaced if an app exists that was given the Phone permission)
Q22: How comfortable would you be with the <app name> app seeing the pictures taken
with your camera? (only surfaced if an app exists that was given the Storage permission)
Q23: Do you have any feedback for us? Is there anything else you would like to tell us?
Open ended response
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In The Workshop on ns-3 (WNS3) - held in conjunction with the sixth International
Conference on Simulation Tools and Techniques (SIMUTools 2013), Cannes. Available
in Figure D.2.

[Robyns et al., 2014] Robyns, P., Bonné, B., Quax, P., and Lamotte, W. (2014). Short pa-
per: exploiting wpa2-enterprise vendor implementation weaknesses through challenge
response oracles. In Proceedings of the 2014 ACM conference on Security and privacy
in wireless & mobile networks (ACM WiSec ’14), pages 189–194. ACM

[Robyns et al., 2017] Robyns, P., Bonné, B., Quax, P., and Lamotte, W. (2017). Non-cooperative
802.11 mac layer fingerprinting and tracking of mobile devices. Security and Commu-
nication Networks, 2017

Other notable talks and presentations:

• TED talk at TEDxGhent 2014: “Your smartphone is leaking your information”. Avail-
able on YouTube at: https://www.youtube.com/watch?v=2GpNhYy2l08.

• Talk at the European Commission’s 9th Security and Safety Symposium in 2014: “Your
smartphone is a traitor!”.

• Talk at UHasselt Science Festival in 2015: “Je smartphone verklikt je”. Newspaper
article available in Figure D.1.

https://www.youtube.com/watch?v=2GpNhYy2l08
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• Providing a technical explanation of the Facebook privacy case on national news (VTM).
Available on the news website at: http://nieuws.vtm.be/binnenland/159382-

zo-houdt-facebook-iedereen-de-gaten.

Articles and other resources related to the research presented in this thesis:

• Forbes article mentioning SASQUATCH and Wi-Fi PrivacyPolice: http://www.forbes.
com/sites/ianmorris/2015/02/06/android-phones-are-leaking-valuable-information-

heres-how-to-stop-them/

• Article on XDA Developers mentioning SASQUATCH and Wi-Fi PrivacyPolice: http:
//www.xda-developers.com/wifi-data-leaks-and-prevention/

• Reddit Q&A sessions about Wi-Fi PrivacyPolice: http://www.reddit.com/r/Android/
comments/2uyw50/wifi_privacypolice_prevents_your_smartphone_or/ and http:
//www.reddit.com/r/androidapps/comments/2u2ww0/dev_wifi_privacypolice_

prevents_your_smartphone/.
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Figure D.1: Newspaper article about the talk “Je smartphone verklikt je” at UHasselt science
festival in Het Belang van Limburg, May 11th 2015
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Simulating the Behavior of Opportunistic 
Network Protocols at Mass Events with ns-3
Bram Bonné       Arno Barzan       Peter Quax       Wim Lamotte
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Figure D.2: Poster presented at The Workshop on ns-3 (WNS3) - held in conjunction with the
sixth International Conference on Simulation Tools and Techniques (SIMUTools 2013), Cannes.
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Assessing the Impact of 802.11 Vulnerabilities using Wicability
Pieter Robyns, Bram Bonné, Peter Quax, Wim Lamotte

UHasselt (EDM) – tUL– iMinds

Motivation Capability aggregation

Wicability platform: http://www.wicability.net/

Contributing data

• When a novel vulnerability is discovered by researchers, its impact
must be determined

• How many devices? Which vendors? Which protocols?
• Buying sales reports or market surveys (Gartner, Forrester, etc.) is

expensive
• Wardriving is time consuming, localized, and repeats work that has

been done before
• Wicability offers these insights free of charge

Acquisition
• Supported protocols, transmission rates, crypto suites, etc. are

announced through 802.11 Information Elements
• MAC address OUIs indicate the vendor of the device

Matching and presentation
• Group IEs per MAC address, dataset, location, and time
• Analyze anonymized results and present via public web interface

• Contributions welcomed from external researchers
• Via web interface through submission of anonymized pcap files
• Similar to submission process of CRAWDAD [1]

Icons designed by “Freepik”, “Madebyoliver” and distributed by Flaticon [2]. We thank The Safe Group for helping with the data collection at Glimps 2015.

[1] J. Yeo, D. Kotz, and T. Henderson. CRAWDAD: a community 
resource for archiving wireless data at Dartmouth. ACM SIGCOMM 
Computer Communication Review, 36(2):21-22, 2006.

[2] Flaticon, Free vector icons, http://www.flaticon.com/.

1 2
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Wicability can be used as a free alternative to support conclusions
about the number of affected devices

Acquisition Matching Presentation
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Figure D.3: Poster presented by Pieter Robyns at The 9th ACM Conference on Security & Privacy
in Wireless and Mobile Networks, Darmstadt.
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